
CSCI 141
Scott Wehrwein

The bool data type

Boolean Operators

Boolean Expressions

Goals
• Understand the use and values of the type bool and the

meaning of a boolean expression.

• Understand the behavior of the arithmetic comparison
operators: >, <, <=, >=, ==, !=

• Understand the behavior of the boolean logical operators
and, or, not

• Know where the above operators fit into the order of
operations

• Be able to write out a truth table for a boolean expression of
two variables.

What have we covered so far?
• Data is stored in memory.

• Each piece of data has a type.

• Variables can assign names to pieces of
data.

• Operators can do things to the data (these
operations are performed by the CPU).

integers are stored using their binary representation

so far we’ve seen: int, float, str

the assignment operator stores a value in a variable, as in:
my_var = “Hello, world!”

so far: assignment operator (=)
 arithmetic operators: (+,-,*,/,**,//,%)

What have we covered so far?
• A function can take inputs (arguments) and

can produce an output (return value)

• Statements are instructions that are
executed

• Expressions are like phrases that can be
evaluated to determine what value they
represent.

so far: assignment statements, such as my_var = 64 + 8

so far:
• functions that return values, like int(42.8)

• arithmetic expressions, like (4 + 2) / 2

• and combinations of other expressions, like (2**3) // int(user_input)

so far: input, print, type, int, float, str

Less than
Greater than
Less than or equal to
Greater than or equal to

These ones do
what you think.<

>

<=

>=

==

!=

3 < 4

4 <= 4

6.7 > 6.3

1000 >= 1000

Some more familiar
operators

What does 3 < 4 evaluate to?
What does type(3 < 4) evaluate to?

a < b

What does 3 < 4 evaluate to?
What does type(3 < 4) evaluate to?

We need a new data type!

can only be one of two things:

a true statement or a false statement.

Boolean expressions are expressions that evaluate to one
of two possible values: True or False

True
bool

The bool data type
• Named after 19th century philosopher/

mathematician George Boole, who developed
Boolean algebra

• A boolean value (bool) represents logical
propositions that can be either true or false.

• In Python, these values are reserved keywords:
True and False. Note capitalization.

• Can be used for things like 3 < 4 or a < b,
but anything else that can be true or false:

is_raining = False

Less than
Greater than
Less than or equal to
Greater than or equal to

<

>

<=

>=

==

!=

3 < 4

4 <= 4

6.7 > 6.3

1000 > 1000

Comparison Operators
Examples:

=> True

=> True

=> True

=> False

These should be familiar!

Less than
Greater than
Less than or equal to
Greater than or equal to

<

>

<=

>=

==

!=

Comparison Operators

Equal to

Not equal to

Examples:

3 == 4

5 != 4

4.0 < 4.6

=> False

=> True

=> True

These should be familiar!

Less than
Greater than
Less than or equal to
Greater than or equal to

<

>

<=

>=

==

!=

Comparison Operators

Equal to

Not equal to

Examples:

3 == 4

5 != 4

4.0 < 4.6

=> False

=> True

=> True

These should be familiar!

Unlike some operators (e.g., //), the concept of
equality has meaning for some non-numeric types:

True == False

"abc" == "bcd"

"a" == "A"

type(4) == type(5)

5.0 == 5

=> False

=> False

=> False

=> True

=> True

Logical Operators
Less than
Greater than
Less than or equal to
Greater than or equal to

<

>

<=

>=

==

!=

and

or

not

Equal to

Not equal to
logical conjunction, logical and
logical disjunction, logical or

logical negation, logical not

a or b is true when at least
one of a and b evaluates to True

a and b is true only when
both a and b evaluate to True

not switches the value:

not True => False

not False => True

Binary vs Unary Operators
• We have already seen some binary

operators and one unary operator.

• Binary operators take two operands:

• Unary operators take one operand:

a + b

c // d

12 != 4

etc.

-b

not False

Notice: minus (-) and plus (+) can behave as unary or binary operators!

Truth Tables for and, or

y

x

x and y

T F

F

T T F

F F

If x is true and y is
true, x and y is true.

If x is true and y is
false, x and y is false.

Truth Tables for and, or

y

x

x and y

T F

F

T T F

F F

y

x

x or y

T F

F

T T T

T F

Operator Precedence
or

de
r o

f p
re

ce
de

nc
e

All are evaluated left to right
except for exponentiation.

order of evaluation

Parentheses

Exponentiation (right-to-left)

Multiplication and Division

Addition and Subtraction

Operator Precedence: Updated
Parentheses

Exponentiation (right-to-left)

Unary + and -

Multiplication and Division

Addition and Subtraction

Numerical comparisons <, >, <=, >=, ==, !=

not

and

or

or
de

r o
f p

re
ce

de
nc

e

All are evaluated left to right
except for exponentiation.

order of evaluation

Operator Precedence: Updated
Parentheses

Exponentiation (right-to-left)

Unary + and -

Multiplication and Division

Addition and Subtraction

Numerical comparisons <, >, <=, >=, ==, !=

not

and

or

or
de

r o
f p

re
ce

de
nc

e

All are evaluated left to right
except for exponentiation.

order of evaluation

You can look up all the details: https://docs.python.org/3/reference/expressions.html#operator-precedence

Special case:

2**-1 = 0.5

Unspecial but surprising case:

-2**2 = -4

}
<latexit sha1_base64="WSujBXhkxkvOzPsVW+jHSyzK0gY=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh960X664VXcOskq8nFQgR6Nf/uoNYpZGXCGT1Jiu5yboZ1SjYJJPS73U8ISyMR3yrqWKRtz42fzSKTmzyoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zuimG134mVJIiV2yxKEwlwZjM3iYDoTlDObGEMi3srYSNqKYMbTglG4K3/PIqaV1Uvcuqd1+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB5+IjWo=</latexit>

https://docs.python.org/3/reference/expressions.html#operator-precedence

Examples
print(3 != 5 and 4 < 7)

print(3 == 5 or 4 < 7)

print(not False)

print(3 == 5 or 4 > 7)

print(not 6 < 8)

Bigger Example
1 == 6 and True or (1.2 < (5 % 3))

Bigger Example
1 == 6 and True or (1.2 < (5 % 3))

1 == 6 and True or (1.2 < 2)

False and True or True

 False or True

1 == 6 and True or True

True

