CSCI 141

Scott Wehrwein

The bool data type
Boolean Operators
Boolean Expressions

Goals

Understand the use and values of the type bool and the
meaning of a boolean expression.

Understand the behavior of the arithmetic comparison
operators: >, <, <=, >=, ==, | =

Understand the behavior of the boolean logical operators
and, or, not

Know where the above operators fit into the order of
operations

Be able to write out a truth table for a boolean expression of
two variables.

What have we covered so far?

e Data is stored in memory.

integers are stored using their binary representation

e Each piece of data has a type.

so far we’ve seen: int, float, str

e Variables can assign names to pieces of

data- the assignment operator stores a value in a variable, as in:
my var = “Hello, world!”

e Operators can do things to the data (these
operations are performed by the CPU).

so far: assignment operator (=)
arithmetic operators: (+,-,*,/,**,//,%)

What have we covered so far?

e A function can take inputs (arguments) and
can produce an output (return value)

so far: input, print, type, int, float, str

e Statements are instructions that are
executed

so far: assignment statements, such asmy var = 64 + 8

e Expressions are like phrases that can be

evaluated to determine what value they
represent.

so far:

e functions that return values, like int (42.8)
e arithmetic expressions, like (4 + 2) / 2

e and combinations of other expressions, like (2**3) // int(user_ input)

Some more familiar
operators

These ones do

< Less than what you think.

> (Greater than

<= Less than or equal to
>= Greater than or equal to

What does 3 < 4 evaluate to0?
What does type (3 < 4) evaluate to?

We need a new data type!

a <D>b

can only be one of two things:
a true statement or a false statement.

Boolean expressions are expressions that evaluate to one
of two possible values: True or False

What does 3 < 4 evaluate to? True
What does type (3 < 4) evaluate to? bool

The bool data type

* Named after 19th century philosopher/
mathematician George Boole, who developed
Boolean algebra

* A boolean value (boo1l) represents logical
propositions that can be either true or false.

* In Python, these values are reserved keywords:
True and False. Note capitalization.

e Can be used for things like 3 < 4ora < b,
but anything else that can be true or false:

1s raining = False

Comparison Operators

These should be familiar!

< Lessthan Examples:

> (@Greater than 3 < 4 => True

<= Less than or equal to 4 <= 4 => True

>= Greater than or equal to 6.7 > 6.3 => True
= 1000 > 1000 => False

Comparison Operators

These should be familiar!

< Lessthan Examples:

> Greater than 3 == 4 => False
<= Less than or equal to 5 1= 4 => True
>= (Greater than or equal to 4.0 < 4.6 => True

== Equal to

!= Not equal to

Comparison Operators

These should be familiar!

< Lessthan Examples:
> (Greater than

3 == 4 => False
<= Less than or equal to 5 1= 4 => True
>= Greater than or equal to 4.0 < 4.6 => True

== Equal to _
Unlike some operators (e.g., / /), the concept of

!= Notequalto equality has meaning for some non-numeric types:

True == False => False
"abc" == "bcd" => False
"a" == "A" => False

5 => True

)
== 5 => True

Logical Operators

< Lessthan a and b is true only when
> Greater than both a and b evaluate to True

<= Less than or equal to

>= Greater than orequalto = a or b Is true when at least
—= Equal to one of a and b evaluates to True
= Not equal to |

not switches the value:

not True => False
not False => True

and logical conjunction, logical and

or logical disjunction, logical or

not logical negation, logical not

Binary vs Unary Operators

* \We have already seen some binary
operators and one unary operator.

e Binary operators take two operands:

a + b
c // d etc.
12 1= 4
e Unary operators take one operand:
-b

not False

Notice: minus (-) and plus (+) can behave as unary or binary operators!

Truth Tables for and, or

X and y
Y
T F
| T E If x IS true and.y IS
false, x and y is false.
X
FI F F

If xiIstrueand y is
true, x and vy Is true.

Truth Tables for and, or

X and y X Or Yy
Y Y
T F T F
T T F T T T
X X

order of precedence

Operator Precedence

Parentheses

Exponentiation (right-to-left)

Multiplication and Division

Addition and Subtraction

uolen|eAs Jo 1ap.o

All are evaluated left to right
except for exponentiation.

Operator Precedence: Updated

Parentheses
8 Exponentiation (right-to-left) o
= o
2 Unary + and - 1
0 S
© | Multiplication and Division o
L -

<

Q.
- Addition and Subtraction E:)-
- . | 2
Q Numerical comparisons <, >, <=, >=, ==, I= o
-
— -
O not

and

All are evaluated left to right
except for exponentiation.

or

Operator Precedence: Updated

order of precedence

Parentheses
Exponentiation (right-to-left) Special case: o
2**-1 =0.5 a
Unary + and — Unspecial but surprising case: 2
272 =-4 9-.
Multiplication and Division o
<
Addition and Subtraction =
. . 2
Numerical comparisons <, >, <=, >=, ==, I= o
-
not
and :
All are evaluated left to right
or except for exponentiation.

You can look up all the details: https://docs.python.org/3/reference/expressions.html#operator-precedence

https://docs.python.org/3/reference/expressions.html#operator-precedence

Examples

print(3 != 5 and 4 < 7)
print(3 == 5 or 4 < 7)
print (not False)

print(3 == 5 or 4 > 7)

print(not 6 < 8)

Bigger Example

1l == 6 and True or (1.2 < (5 % 3))

Bigger Example

1l == 6 and True or (1.2 < (5 % 3))
1 == 6 and True or (1.2 < 2)
1l == 6 and True or True
False and True or True
False or True

True

