
CSCI 141
Scott Wehrwein

Binary representation

Goals
• Know how to convert a decimal integer to

binary and vice versa.

• Understand the basic idea behind how strings
and floating-point numbers are represented
on computers.

Representing Numbers

on Computers

• What happens “under the
hood” when we execute:

• The value 5 gets stored
somewhere in main memory
(and we somehow keep track of
where it’s stored).

result = 5

Main
Memory

Representing Numbers

on Computers

• What happens “under the
hood” when we execute:

• The value 5 gets stored
somewhere in main memory
(and we somehow keep track of
where it’s stored).

result = 5

Main
Memory

5

How are numbers stored in memory?

Representing Numbers

on Computers

Memory is made of specialized electric circuits that provide
cells that can “store” information by being in one of two
states: on or off.

Zoom and enhance!

(Physics-wise: high or low voltage)

How are numbers stored in memory?

Representing Numbers

on Computers

We impose mathematical meaning on these states:

“off” = 0

“on” = 1

How are numbers stored in memory?

Representing Numbers

on Computers

1 0 1 1 1 0
We impose mathematical meaning on these states:

“off” = 0

“on” = 1

How are numbers stored in memory?

Representing Numbers

on Computers

1 0 1 1 1 0

Each 1/0 memory location is called a bit.

Representing Numbers

on Computers

1 0 1 1 1 0

Each 0/1 memory location stores one bit.
8 bits is called a byte.

Metric prefixes are used to
represent numbers of bytes,
e.g. kilo, mega, giga, etc.

In computer science, the
prefixes have slightly
different meaning:

kilo is not 1000, it’s 1024.

Representing Numbers

on Computers

1 0 1 1 1 0

Each 0/1 memory location stores one bit.
8 bits is called a byte.

Usual SI prefixes:

• kilo = 103 = 1000

• mega = 106 = 1 million

• giga = 109 = 1 billion

• tera = 1012 = 1 trillion

Base 2 prefixes:

• kilobyte = 210 = 1,024 bytes

• megabyte = 220 = 1,048,576 bytes

• gigabyte = 230 = 1,073,741,824 bytes

• terabyte = 240 = 1,099,511,627,776 bytes

Binary Representation
If all we can store is 0’s and 1’s, how do we
represent other numbers (e.g., 23?)

• By representing numbers in base 2 (binary)
instead of base 10 (decimal).

• Observation:

• The decimal representation of a number is a sum of
multiples of the powers of ten.

104 = 1 * 102

+ 0 * 101

+ 4 * 100

(hundreds place)
(tens place)
(ones place)

In decimal:

Binary Representation
If all we can store is 0’s and 1’s, how do we
represent other numbers (e.g., 23?)

• By representing numbers in base 2 (binary)
instead of base 10 (decimal).

• Observation:

• Key idea: use 2 here instead of 10.

104 = 1 * 102

+ 0 * 101

+ 4 * 100

(hundreds place)
(tens place)
(ones place)

In decimal:

Binary to Decimal

• In binary, each digit represents a multiple of
a power of 2

1 0 1 1 1 1
202122232425

Binary to Decimal

• In binary, each digit represents a multiple of
a power of 2

• 101111 in binary is 47 in decimal.

1 0 1 1 1 1
202122232425

24832 + + + + = 471

Decimal to Binary
Converting decimal to binary: go the other way.

Strategy: similar to making change.

Algorithm:

• Find the largest power of two less than the number.

• Put a 1 in that place and subtract the power of two

• Repeat with the remaining number until it's 0

23 = ? * 24 (16)

+ ? * 23 (8)

+ ? * 22 (4)

+ ? * 21 (2)

+ ? * 20 (1)

Problem: write 23 as
a sum of powers of 2

Decimal to Binary
Converting decimal to binary: go the other way.

Strategy: similar to making change.

Algorithm:

• Find the largest power of two less than the number.

• Put a 1 in that place and subtract the power of two

• Repeat with the remaining number until it's 0

23 = 1 * 24 (16)

+ ? * 23 (8)

+ ? * 22 (4)

+ ? * 21 (2)

+ ? * 20 (1)

Problem: write 23 as
a sum of powers of 2

(23 - 1*16 = 7 left)

Decimal to Binary
Converting decimal to binary: go the other way.

Strategy: similar to making change.

Algorithm:

• Find the largest power of two less than the number.

• Put a 1 in that place and subtract the power of two

• Repeat with the remaining number until it's 0

23 = 1 * 24 (16)

+ 0 * 23 (8)

+ ? * 22 (4)

+ ? * 21 (2)

+ ? * 20 (1)

Problem: write 23 as
a sum of powers of 2

(23 - 1*16 = 7 left)
(7 - 0 * 8 = 7 left)

Decimal to Binary
Converting decimal to binary: go the other way.

Strategy: similar to making change.

Algorithm:

• Find the largest power of two less than the number.

• Put a 1 in that place and subtract the power of two

• Repeat with the remaining number until it's 0

23 = 1 * 24 (16)

+ 0 * 23 (8)

+ 1 * 22 (4)

+ ? * 21 (2)

+ ? * 20 (1)

Problem: write 23 as
a sum of powers of 2

(23 - 1*16 = 7 left)
(7 - 0 * 8 = 7 left)
(7 - 1 * 4 = 3 left)

Decimal to Binary
Converting decimal to binary: go the other way.

Strategy: similar to making change.

Algorithm:

• Find the largest power of two less than the number.

• Put a 1 in that place and subtract the power of two

• Repeat with the remaining number until it's 0

23 = 1 * 24 (16)

+ 0 * 23 (8)

+ 1 * 22 (4)

+ 1 * 21 (2)

+ ? * 20 (1)

Problem: write 23 as
a sum of powers of 2

(23 - 1*16 = 7 left)
(7 - 0 * 8 = 7 left)
(7 - 1 * 4 = 3 left)
(3 - 1 * 2 = 1 left)

Decimal to Binary
Converting decimal to binary: go the other way.

Strategy: similar to making change.

Algorithm:

• Find the largest power of two less than the number.

• Put a 1 in that place and subtract the power of two

• Repeat with the remaining number until it's 0

23 = 1 * 24 (16)

+ 0 * 23 (8)

+ 1 * 22 (4)

+ 1 * 21 (2)

+ 1 * 20 (1)

Problem: write 23 as
a sum of powers of 2

(23 - 1*16 = 7 left)
(7 - 0 * 8 = 7 left)
(7 - 1 * 4 = 3 left)
(3 - 1 * 2 = 1 left)
(1 - 1 * 1 = 0 left)Answer: 10111

That’s how int is stored.
What about str and float?

How do you store strings?

A str is a sequence of characters (letters, numbers, symbols)

1. Agree by convention on a number that represents each
character.

2. Convert that number to binary.

3. Store a sequence of those numbers to form a string.

Various conventions exist:
ASCII, Unicode

How do you store strings?

this is '\n': it's just
another character!

That’s how str works.
• What about float?

• It’s harder to write 4.3752 as a sum of
powers of two.

What about float?
• Floating-point numbers are stored similarly to scientific

notation:

• Need to store the sign, the base and the exponent.

• In memory, it looks something like this:

• Base and exponent are represented as base-2 integers

• Finite precision: not all numbers can be represented!

1399.94 = +0.39994 * 103

