list

weather| -

— o | 2 3 4

float

P =
SN
63 —/ 8 | [rssw

29.75

"light rain"

CSCI 141

Scott Wehrwein

Variables are References
Mutability's Implications




Goals

- Understand the implications of variables
holding references to mutable objects:

- Multiple variables can refer to the same object.

- Be able to draw memory diagrams for code
snippets involving mutable objects.

- Know how to query or modify lists using the
following: index, insert, remove, del



| want to show you
something weird.



| want to show you
something weird.

e Demo:



Objects and Variables:

Digging a little deeper

When we talked about variables...

Sometimes | got lazy and wrote:

number

2

but what's truly happening is:

number

All variables store references to objects.

Objects can have any type



All variables store
references to objects

In code: In memory:

number = 2

number | ——




All variables store
references to objects

In code: In memory:
int
number = 2 number \\——V 2
number = 4 \. .
int

Like strings, ints are immutable:

You can't change its value.
You can only make a new one with a different value.



All variables store
references to objects

In code: In memory:
int
number = 2 number . 2
number = 4 \. .
int

Aside: What happens to the 2 object? 4

e |f no variables refer to it, Python deletes it automatically.
* This is called garbage collection.

For immutable objects, the fact that variables hold
references doesn't have many interesting consequences.



Example

Execute the following, drawing and updating the
memory diagram for each variable and object involved.

number = 2 AT
other number = number K

number = number + 1

/\ Uil lzec

@W,VLWWLME

|



All variables store
references to objects

What about mutable objects?

In code: In memory:
/ lzst
a = [4, 5] a - 4
b = a
v |/

The value of a is a reference to that list object, so
the new value of b is also a reference to that same list!



All variables store
references to objects

What about mutable objects?

In code:

a = [4, 5]

b = a
b[o] =1
print (a)

[1, 5] # 111

In memory:

list

////” 0 1

115

v |/

More than one variable can
refer to the same object.



Don't make this mistake

a
b

[1, 2, 3]
a

you did not just create a copy of a

To create a true copy of a mutable object, you can't
simply assign the object to a new variable.



List elements store
references to objects

List elements are just like variables!

In code: In memory:
a > list
a = [4, 5] 0 | 1
115

| lied to you again!



List elements store
references to objects

List elements are just like variables!

In code: In memory (the true picture):
a > list
a = [4, 5] L
VAR
int int

4 S




List elements store

references to objects

weather = [63, "light rain", 8, "SSwW",
””””* list
weather| — 0 1 4
/ NN
int str
int
8 llsswﬂ

63

str

"light rain”

29.75]

~

float

29.75




List elements store

references to objects

weather = [63, "light rain", 8, "sSsw", 29.75]
weather[1] = "cloudy"
””””* list
weather| — 0 1 4
/ . S \
int str float
int

8 "S Q" 29.75

63

str

"light rain”




weather = [63, "light rain",

weather[1] = "cloudy"
””””* list

weather| — 0 1

List elements store

references to objects

/;X/

8,

IISSWII ,

29.75]

~

str

'}ﬂgudy"
i

"light rain”

str

float

L1 SSW n

29.75




weather = [63,

weather[1] = "cloudy"
””””* list

weather| — 0

List elements store

references to objects

"light rain",

8,

IISSWII ,

1

/////////”;tr

J

—

int

63

"cloudy"

29.75]

~

str

float

L1 SSW n

29.75




Example

Draw and update the memory diagram
as the following code is executed.

weather = [63, "light rain"]
tomorrow weather = weather
tomorrow weather[0] = 68
print (weather[0])




Creating lists vs
Creating references

e A list literal creates a new list
a = 1[4, 5, 6]

e List assignment does not create a new list
b = a

e List concatenation creates a new list
c = a + b

e List slicing creates a new list
d = al[:1]



A few more list operations:

my list.index(value)
Return the index of the first occurrence of value inmy list
Throw an error if value isnotinmy list.

my list.insert(index, value)
Inserts value intomy list at index, shifting all following elements one
spot to the right.

my list.remove(value)
Removes the first item from the list whose value is equal to value.
Causes an error if value isnotinmy list.

del my list[index]
Removes the element at index, shifting all following elements one spot
to the left.



Index, insert, remove, del:
Demo

abc = ["B", "C"
abc.index("C"
abc.index("F"
abc.insert (0,
abc.remove('C")
abc.remove("F"
del abc[0]



Problem 3

Write a function that returns a true copy (i.e., a different
list object containing the same values) of a given list.

def copy list(in list):

""" Return a new list object containing
the same elements as in list.
Precondition: in list's contents are
all immutable. """

Hint: one possible approach uses a loop and the append method.



Problem 4

def snap(avengers):
""" Remove a randomly chosen half of the
elements from the given list of avengers



