CSCI 141

Scott Wehrwein

String Comparisons and Ordering

Goals

Understand the behavior of the following
operators on strings:

¢« <, >, ==, !=1in,and not in

» Understand how Python orders strings using lexicographic
ordering

Operators on Strings

Familiar:
+ concatenation ‘a’ + b => Tab”
* repetition "ha" * 3 => "hahaha"
[] indexing, slicing "batman"[:3] => "bat"
== equals "antman" == "natman" => False

1= not equals "antman" != natman" => True

String operators

Unfamiliar, but intuitive:

in "a" in "abc". # => True
"dab" in "abacadabra" # => True
"A" in "abate" # => False
"eye" in "team" # => False

not in: exactly what you think (opposite of in)

String operators

Familiar, but (a little) unintuitive:

<. 0> much like in a dictionary

e

Inequality comparisons follow lexicographic ordering:
e Order based on the first character

e |f tied, use the next character,

e and so on

4

These are all True:
gt < MY

"ab" < "ac"
"a" < "aa"
o g

String operators

Familiar, but (a little) unintuitive:

< >

4

Caveat: lexicographic ordering is case-sensitive, and ALL
upper-case characters come before ALL lower-case letters:

These are all True:
IIAII < " a "

1" Z 1" < 1" a 1"

"Jello" < "hello"

Lexicographic Ordering

Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Lexicographic Ordering

Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Tie - next character

Lexicographic Ordering

Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Tie - next character

Lexicographic Ordering

Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Tie - next character

Lexicographic Ordering

Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Tie - next character

Lexicographic Ordering

Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

i > e,s0 "Bellingham" > "Bellevue"

Aside:
"Bell" < "Bellingham" => True

When all letters are tied, the shorter word comes first.

Lexicographic Ordering:
Aside

" ? " < " ! " # => f?f??

The ord function takes a character and returns its
numerical (ASCII) code, which determines its ordering.

The chr function takes a numerical (ASCII) code and
returns the corresponding character.

ord("?") # => 63 o .
ord("!") # => 33 2" < "M # => False

