
Lecture 12 - Exercises

12B - Tuples

1. What does the following code print?

2. What does the following code print?

3. Suppose the following code is executed. The numbers at left are line numbers and are not part of the code itself. If any
line causes an error, assume that line is not run and continue execution with the next line.

1. Which line(s), if any, cause errors? List all that apply.
2. What does line 5 print?

4. Consider the following function:

For each of the following calls to the above function, say what the function returns, or “error” if an error will occur.

1. f(1, 2)

2. f(1, 2, 3, 4)

3. f((1, 2), (3, 4))

4. f(((1, 1), 2), (3, 4))

5. f((1, 1, 2), (3, 4))

Problems

1. Recall that the distance between two points can be calculated using the pythagorean theorem. The distnace between
the two points is the hypotenuse of a triangle formed by the difference in coordinates and the difference in
coordinates:

a = 1

b = 2

c = 3

v = (a, a, c)

print(v, sep=" ")

a = 1

b = 2

c = 3

a, b, c = (a, a, c)

print(a, b, c, sep=" ")

1 a, b, c = 6, 4, 2

2 (z, x) = c, b

3 print((x, z))

4 v = (x, z, c)

5 print(v)

6 a, b = v

def f(a, b):

 xa, ya = a

 xb, yb = b

 return (ya, xa), (yb, xb)

With this in mind, implement the following function:

2. A common task in computer graphics is to triangulate a polygon - or in other words, generate a collection of triangles
that cover a polygon. A simple case of this is triangulating a quadrilateral - or in other words, splitting a 4-sided shape
into two triangles. We’ll assume that the quadrilateral in question is convex (i.e., the line between any pair of vertices
does not leave the quadrilateral). We can triangulate this shape by connecting one pair of opposite points with a line.
For example, the following quadrilateral can be triangulated by either connecting and or connecting and .
For various reasons it turns out to be desirable to have triangles whose smallest angle isn’t too small; this means that in
the shape below, a better triangulation would be to connect and .

Implement the following function, which returns the pair of opposite points that are closest together. You can make use
of the distance function you implemented above.

3. Implement the following function to draw a triangulation of a quadrilateral using a turtle. You can make use of any of the
functions you’ve written so far. You also may want to check out the turtle’s goto method to help make things a little
simpler.

Test your program using a main program like the following:

def distance(p1, p2):

 """ Return the distance between 2D points p1 and p2.

 Precondition: p1 and p2 are 2-tuples containing the

 x and y coordinates of the two points. """

 # your code here

def best_divider(p1, p2, p3, p4):

 """ Return the closest pair of opposite points on the quadrilateral formed by p1,

 p2, p3, and p4. Precondition: p1-p4 are 2-tuples of numbers specifying a

 quadrilateral in counter-clockwise order. """

def draw_triangulation(t, p1, p2, p3, p4):

 """ Draw the triangulated quadrilateral defined by vertices p1, p2, p3, p4 using

 the turtle t. The triangulation connects the closer pair of opposing points.

 Precondition: t is a turtle; p1-p4 are 2-tuples of numbers specifying a

 quadrilateral in counter-clockwise order."""

When I run this, I get a drawing in the turtle window that looks like this:

4. Polygons with more vertices are trickier to optimally triangulate, because there are more choices of pairs of edges to
connect. A simple, foolproof method for getting a triangulation (but not necessarily an optimal one) is called a fan
trianguation. Starting at one vertex, a line is drawn to connect that vertex to each other one that’s not adjacent to it, as
in the example image below:

Implement the following function, which draws a fan-triangulated picture of a polygon specified by a list of vertices.

Hint: You may find it helpful to be able to access a specific element of the list: you can do this with poly[i] , where
i is the index of the vertex you want, starting with 0 as the first element.

Write a main program to test your function.

5. See if you can divise a method for triangulating a convex polygon that will minimize long-and-narrow triangles. This
could involve a fan triangulation with a carefully chosen starting vertex, or a different approach entirely. Focus on the
algorithm first, writing it in pseudocode; once you’ve got something you think will work, feel free to go ahead and write
Python code to implement it.

import turtle

define your function(s) here

q = turtle.Turtle()

p1 = (10, 10)

p2 = (200, 50)

p3 = (240, 120)

p4 = (100, 100)

draw_triangulation(q, p1, p2, p3, p4)

def draw_fan_triangulation(t, poly):

 """ Draw a fan-triangulated picture of the polygon specified by poly.

 Preconditions: t is a turtle; poly is a list of 3 or more 2-tuples of numbers

 that give the vertices of a convex polygon in counter-clockwise order. """

https://en.wikipedia.org/wiki/Fan_triangulation

	Lecture 12 - Exercises
	12B - Tuples
	Problems

