M L

g

J R v v ol ol (5 (81 87 8 o oo oy

W v T ot () ol ot (900 ot (17 (5 oy

,/ _
R e e B R e e e T AT R A4 174 7/
L, e, 14“(»1. D8~

-~h ~ o~ —)

SRR - va ..04;1

% 1&0‘..

- - - ./100 -
o -~ . e s O
“a o W

T

0 @14&.4& -
A

D R et N

CSCI 141

Scott Wehrwein

Binary representation

Goals

» Know how to convert a decimal integer to
binary and vice versa.

» Understand the basic idea behind how strings
and floating-point numbers are represented

on computers.

Representing Numbers

on Computers

e What happens “under the
hood” when we execute:

result = 5

 The value 5 gets stored
somewnhere in main memory
(and we somehow keep track of
where it’s stored).

Memory

Representing Numbers

on Computers

e What happens “under the
hood” when we execute:

result = 5

 The value 5 gets stored
somewnhere in main memory
(and we somehow keep track of
where it’s stored).

Memory

Representing Numbers
on Computers

How are numbers stored in memory?

]
|
]

Memory is made of specialized electric circuits that provide
cells that can “store” information by being in one of two

states: on or off. (Physics-wise: high or low voltage)

I]
f_
[}

Representing Numbers
on Computers

How are numbers stored in memory?

]

=

]

Il

We impose mathematical meaning on these states:

“Oﬁ” — O
“On” — 1

Representing Numbers
on Computers

How are numbers stored in memory?

i 0 1 1 1 O

We impose mathematical meaning on these states:
Ho.ﬁ:!! — O
Hon!! — 1

Representing Numbers
on Computers

How are numbers stored in memory?

Each 1/0 memory location is called a bit.

Representing Numbers
on Computers

i1 0 1 1 1 0
/

Each 0/1 memory location stores one bit.

8 bits is called a byte.

| | In computer science, the
Metric prefixes are used to orefixes have slightly

represent numbers of bytes, different meaning:
e.g. kilo, mega, giga, etc. jio is not 1000, it’s 1024.

Representing Numbers
on Computers

i1 0 1 1 1 0
/

Each 0/1 memory location stores one bit.

8 bits is called a byte.

Usual Sl prefixes: Base 2 prefixes:

e kilo=103=1000 * Kkilobyte =210 =1,024 bytes

* mega = 100=1 million * megabyte = 220 = 1,048,576 bytes

e giga=10°=1 billion * gigabyte = 230 =1,073,741,824 bytes

e tera= 1012 =1 trillion * terabyte = 240 =1,099,511,627,776 bytes

Binary Representation

If all we can store is O’s and 1’s, how do we
represent other numbers (e.g., 237)

e By representing numbers in base 2 (binary)

instead of base 10 (decimal).

In decimal:

e Observation: [104 £|17102 (hundreds place)
+ 07110" (tens place)
+ 47100 (ones place)

* The decimal representation of a number is a sum of
multiples of the powers of ten.

Binary Representation

If all we can store is O’s and 1’s, how do we
represent other numbers (e.g., 237)

e By representing numbers in base 2 (binary)

instead of base 10 (decimal).

In decimal:

e Observation: 104 = 1+*f0g (hundreds place)
+ 0*[0" (tens place)
+ 4*10°0 (ones place)

e Key idea: use 2 here instead of 10.

Binary to Decimal

2° 24 23 22 21 20

* In binary, each digit represents a multiple of
a power of 2

Binary to Decimal

1 0 1 1 1 1
2° 24 23 22 21 20
32 + 3 4 2 1

= 47

* In binary, each digit represents a multiple of

a power of 2
e 101111 In binary is 47 in decimal.

Decimal to Binary

Converting decimal to binary: go the other way.

Strategy: similar to making change.

Algorithm:

 Find the largest power of two less than the number.
e Put a1 in that place and subtract the power of two
e Repeat with the remaining number until it's 0

23 = |7 ¥ 24 (16)

o + (7723 (8)
Problem: write 23 as L 222 (4)
asum ot powersot2 , |pro1 (9
+ 7120 (1)

Decimal to Binary

Converting decimal to binary: go the other way.

Strategy: similar to making change.

Algorithm:

 Find the largest power of two less than the number.
e Put a1 in that place and subtract the power of two
e Repeat with the remaining number until it's 0

(23 - 1*16 = 7 left)
Problem: write 23 as
a sum of powers of 2

++++ N

Decimal to Binary

Converting decimal to binary: go the other way.

Strategy: similar to making change.

Algorithm:

 Find the largest power of two less than the number.
e Put a1 in that place and subtract the power of two
e Repeat with the remaining number until it's 0

23=1*24(16) (23-1*16 =7 left)
Problem: write 23as + 972° & ({7-078=7lety
+ 7722 (4)
asumofpowersof2 4.1 (o)
+ ?*20 (1)

Decimal to Binary

Converting decimal to binary: go the other way.

Strategy: similar to making change.

Algorithm:

 Find the largest power of two less than the number.
e Put a1 in that place and subtract the power of two
e Repeat with the remaining number until it's 0

(23 - 116 = 7 left)
(7-07*8 =7 left)

6)
+ 0*23 (8
4) (7-1*4=23left)
2)
1)

Problem: write 23 as (
+ 1722

asumotpowersot2 | ,5.p1
(

+ 7720

Decimal to Binary

Converting decimal to binary: go the other way.

Strategy: similar to making change.

Algorithm:

 Find the largest power of two less than the number.
e Put a1 in that place and subtract the power of two
e Repeat with the remaining number until it's 0

23=1*24(16) (23-1*16 =7 left)

W + 0*23 (8) (7-0*8=7 left)

Problemf. write 23 EflS 1792 (&) (7-1°4=3left

asumotpowersof2 | 4«01 (3) (3-1*2=1left)
+ 7720 (1)

Decimal to Binary

Converting decimal to binary: go the other way.

Strategy: similar to making change.
Algorithm:
 Find the largest power of two less than the number.

e Put a1 in that place and subtract the power of two
e Repeat with the remaining number until it's 0

23=1*24(16) (23-1*16=7
Problem: write 23as + 1.7 Ej; g 0!
asumofpowersof2 . 4s51) (3-1*2=1
Answer: 10111 + 1*20 (1) (A-1"1=0

That’s how int Is stored.

What about str and float?

How do you store strings?

Various conventions exist:
ASCII, Unicode

A strisa sequence%f characters (letters, numbers, symbols)

1. Agree by convention on a number that represents each
character.

2. Convert that number to binary.

3. Store a sequence of those numbers to form a string.

How do you store strings?
ASCII TABLE

Decimal Hex Char Decimal Hex Char |Decimal Hex Char | Decimal Hex Char
0 0 [NULL] 32 20 [SPACE] | 64 40 @ 96 60

1 1 [START OF HEADING] 33 21 ! 65 41 A 97 61 a
2 2 [START OF TEXT] 34 22 - 66 42 B 98 62 b
3 3 [END OF TEXT] 35 23 2 67 43 C 99 63 c
a4 a4 [END OF TRANSMISSION] | 36 24 $ 68 44 D 100 64 d
5 5 [ENQUIRY] 37 25 % 69 45 E 101 65 o
6 6 [ACKNOWLEDGE] 38 26 & 70 46 F 102 66 t
7 7 [BELL) 39 27 ' 71 47 G 103 67 g
8 8 [BACKSPACE] 40 28 (72 48 H 104 68 h
9 9 [HORIZONTAL TAB] 41 29) 73 49 I 105 69 i
10 A [LINE FEED] 42 2A . 74 4A J 106 6A
11 B FQ"C».' TAB] 43 2B + 75 4B K 107 6B k
12 C RM FEED] 44 2C , 76 4aC L 108 6C [
13 D C, RRIAGE RETURN] 45 2D - 77 4D M 109 6D m
14 £ [SHIFT OUT] 46 2E . 78 4E N 110 6E n
15 F [SHIFT IN] a7 2F 79 4F o 111 6F o
16 10 [DATA LINK zscx.pr' 48 30 0 80 50 P 112 70 p
17 11 .ona CONTROL 1] 49 31 1 81 51 Q 113 71 q
18 12 [DEVICE CONTROL 2] 50 32 2 82 52 R 114 72 r
19 13 [DEVICE CONTROL 3] 51 33 3 83 53 S 115 73 s
20 14 [DEVICE CONTROL 4] 52 34 a 84 54 T 116 74 -
21 15 [NEGATIVE ACKNOWLEDGE] | 53 35 5 85 55 U 117 75 u
22 16 [SYNCHRONOUS IDLE] 54 36 6 86 56 v 118 76 v
23 17 [ENG OF TRANS. BLOCK] 55 37 7 87 57 w 119 77 w
24 18 [CANCEL] 56 38 8 88 58 X 120 78 X
25 19 [END OF MEDIUM] 57 39 9 89 59 Y 121 79 y
26 1A [SUBSTITUTE] 58 3A : 90 S5A Z 122 7A >
27 1B [ESCAPE] 59 3B ; 91 5B [123 7B {
28 1C [FILE SEPARATOR] 60 3C < 92 5C \ 124 7C |
29 1D [GROUP SEPARATOR] 61 3D = 93 5D] 125 7D }
30 1E [RECORD SEPARATOR) 62 3E > 94 SE 2 126 7E -
31 1F [UNIT SEPARATOR] 63 3F ? 95 S5F . 127 7F [DEL]

| Decimal Hex Char |Decimal Hex Char | Decimal Hex Char
32 20 [SPACE] |64 40 @ 96 60
33 21 ! 65 a1 A 97 61 a
34 22 " 66 a2 B 98 62 b
35 23 # 67 a3 C 99 63
W |36 24 $ | 68 44 D | 100 64 d
37 25 % 69 a5 E 101 65 e
38 26 & 70 46 F 102 66 f
39 27 71 a7 G 103 67 g
40 28 | 72 48 H 104 68 h
| 41 29) |73 49 | | 105 69 i
42 2A ¢ 74 an) 106 6A]
43 2B+ 75 a8 K 107 6Bk
44 2, 76 ac L 108 6C |
45 2D - 77 aD M 109 6D m
| 46 2E . | 78 4E N | 110 6E n
47 2F | 79 aF O 111 6F o
48 30 0 80 50 P 112 70 p
49 31 1 81 51 Q 113 71 q
50 32 2 82 52 R 114 72 r
| 51 33 3 | 83 53 S | 115 73 s
52 3 4 84 54 T 116 74t
OGE] | 53 35 5 85 55 U 117 75 u
54 36 6 86 56V 118 76 v
] |55 37 7 87 57 W 119 77w
| 56 38 8 | 88 58 X | 120 78 x
57 39 9 89 59 Y 121 79y
58 3A 90 5A Z 122 Az
59 3B ; 91 58 [123 7B {
60 3¢ < 92 5C 124 7C |
| 61 3D = | 93 5D] | 125 7D}

Decimal Hex Char Decimal Hex Char |Decimal

0 0 [INULL] 32 20 [SPACE] | 64
1 1 [START OF HEADING] 33 21 ! 65
2 2 [START OF TEXT] 34 22 ! 66
3 3 [END OF TEXT] 35 23 & 67
4 4 [END OF TRANSMISSION] 36 24 $ 68
5 5 [ENQUIRY/ 37 25 % 69
6 6 [ACKNOWLEDGE] 38 26 & 70
7 7 [BELL] 39 27 ' 71
8 8 [BACKSPACE] 40 28 712
9 9 [HORIZONTAL TAB] e ic ! . (4l i 73
tiS IS An = IS Just = pypy
11 B [VERTICAL TAB] another character! 75
12 C [FORM FEED] 14 ’ 76
13 D [CARRIAGE RETURN] 45 2D - 77
14 E [SHIFT OUT] 46 2E . 78
15 F [SHIFT IN] 47 2F / 79
16 10 [DATA LINK ESCAPE] 48 30 0 80
17 11 [DEVICE CONTROL 1] 49 31 1 81
18 12 [DEVICE CONTROL 2] 50 32 2 82
19 13 [DEVICE CONTROL 3] 51 33 3 83
20 14 [DEVICE CONTROL 4] 52 34 4 84
21 15 [INEGATIVE ACKNOWLEDGE] | 53 35 5 85
22 16 [SYNCHRONOUS IDLE] 54 36 6 86
23 17 [ENG OF TRANS. BLOCK] 55 37 7 87
24 18 [CANCEL] 56 38 8 88
» 1 10 TEMD AE MEND IAM) 57 20 Q Q0

That’'s how str works.

e \What about float?

e |[t’'s harder to write 4.3752 as a sum of
powers of two.

What about £f1oat?

e Floating-point numbers are stored similarly to scientific
notation: 1399.94 = +0.39994 * 103

* Need to store the sign, the base and the exponent.

* In memory, it looks something like this:

sign exponent(8-bit) fraction (23-bit)
L I |

00111110001000000000000000000000 =0.15625

31 r5 0

e Base and exponent are represented as base-2 integers

* Finite precision: not all numbers can be represented!

