
CSCI 141
Scott Wehrwein

Operators and Operands

Order of Operations

Goals
• Know the definition and usage of operators

and operands

• Know the behavior and purpose of each of the
following operators:  
=, +, -, *, **, /, //, %

• Know how to apply operator precedence rules
to determine the order in which pieces of an
expression are evaluated.

Operators
• Operators are special symbols that

represent computations we can perform.

• Operands are the values that an operator
performs its computations on.

• We’ve seen one already: the assignment
operator.

32my_age =

The assignment operator.

Its first (left) operand Its second (right) operand

=

+

-

*

/

**

//

%

Operators
Some more Python operators:

Some of these probably look familiar…

=

+

-

*

/

**

//

%

Assignment operator: stores a value in a variable
Addition
Subtraction
Multiplication
Division

Operators
Some more Python operators:

These ones do exactly what you think.

=

+

-

*

/

**

//

%

Assignment operator: stores a value in a variable
Addition
Subtraction
Multiplication
Division

Operators
Some more Python operators:

This one too, with one quirk:

In Python, division always returns a float.

3.0 / 2 => 1.5

7 / 2 => 3.5

4 / 2 => ??

=

+

-

*

/

**

//

%

Assignment operator: stores a value in a variable
Addition
Subtraction
Multiplication
Division

Operators
Some more Python operators:

This one too, with one quirk:

In Python, division always returns a float.

3.0 / 2 => 1.5

7 / 2 => 3.5

4 / 2 => 2.0

=

+

-

*

/

**

//

%

Assignment operator: stores a value in a variable
Addition
Subtraction
Multiplication
Division

Operators
Some more Python operators:

Exponentiation

The exponentiation operator raises the left
operand to the power of the right operand.

Python: 2**4 => 16

Math: 24 = 2 * 2 * 2 * 2 = 16

Base Exponent

=

+

-

*

/

**

//

%

Assignment operator: stores a value in a variable
Addition
Subtraction
Multiplication
Division

Operators
Some more Python operators:

Exponentiation
Integer division
Modulus (remainder)

Integer division does division and
evaluates to the integer quotient

Python: 7 // 2 => 3

Math: 7 / 2 is 3 with remainder 1

=

+

-

*

/

**

//

%

Assignment operator: stores a value in a variable
Addition
Subtraction
Multiplication
Division

Operators
Some more Python operators:

Exponentiation
Integer division
Modulus (remainder)

The modulus operator does division and
evaluates to the integer remainder

Python: 7 % 2 => 1

Math: 7 / 2 is 3 with remainder 1

Order of Operations
We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules?

What if we took the parentheses out?

result = 5 % (3 ** (6 // 4))

result = 5 % 3 ** 6 // 4

Order of Operations
We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Parentheses

Exponentiation

Multiplication and Division

Addition and Subtractionpr
ec

ed
en

ce

order of evaluation

(left-to-right)

(left-to-right)

Remember PEMDAS? BIDMAS? BODMAS?

% gets included with division

Order of Operations
We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Example:
10 * 6 ** 2 / 5 // 11

Parentheses

Exponentiation

Multiplication and Division

Addition and Subtractionpr
ec

ed
en

ce

order of evaluation

(left-to-right)

(left-to-right)

Order of Operations
We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Example:
2 ** 2 ** 3

Parentheses

Exponentiation

Multiplication and Division

Addition and Subtractionpr
ec

ed
en

ce

order of evaluation

(left-to-right)

(left-to-right)

(?-to-?)

Order of Operations
We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Example:
2 ** 2 ** 3

Parentheses

Exponentiation

Multiplication and Division

Addition and Subtractionpr
ec

ed
en

ce

order of evaluation

(left-to-right)

(left-to-right)

(right-to-left)
(2 ** 2) ** 3

=> 43 => 64

2 ** (2 ** 3)
=> 28 => 256

Types of operands
• Operators only work if their operands have

the correct types.

• Some operators can work on more than one
type or combination of types:

int + int => int

int + float => float

float + int => float

float + float => float

Not too surprising:
str + str => str

str * int => str

Maybe a little surprising:

float * str => error

Demo

Demo
• operator behaviors:

4 + 5 => 9

4.0 + 5 => 9.0

4.0 + 5.0 => 9.0

“a” + “b” => “ab”

“a” + 1 => error

“a” + “b” => “ab”

“a” * 16 => “aaaaaaaaaaaaaaaa”

