
CSCI 141
Scott Wehrwein

Variables are References

Mutability's Implications

Goals
• Understand the implications of variables

holding references to mutable objects:

• Multiple variables can refer to the same object.

• Be able to draw memory diagrams for code
snippets involving mutable objects.

• Know how to query or modify lists using the
following: index, insert, remove, del

I want to show you
something weird.

I want to show you
something weird.

• Demo:

a = [4, 5]

b = a

b[0] = 1

print(a[0])

Objects and Variables:
Digging a little deeper

When we talked about variables...

number 2

but what's truly happening is:

number

int

2

Sometimes I got lazy and wrote:

All variables store references to objects.

Objects can have any type

All variables store
references to objects
In code:

number = 2

In memory:

number
int

2

All variables store
references to objects
In code:

number = 2

In memory:

number
int

2

int

4
number = 4

Like strings, ints are immutable:

You can't change its value.

You can only make a new one with a different value.

All variables store
references to objects
In code:

number = 2

In memory:

number
int

2

int

4
number = 4

For immutable objects, the fact that variables hold
references doesn't have many interesting consequences.

Aside: What happens to the 2 object?

• If no variables refer to it, Python deletes it automatically.

• This is called garbage collection.

Example
Execute the following, drawing and updating the
memory diagram for each variable and object involved.

number = 2
other_number = number
number = number + 1

f
number0 7

othernumberDD

What about mutable objects?

All variables store
references to objects

In code: In memory:

a = [4, 5]  

b = a

0 1

4 5

list

a

b

The value of a is a reference to that list object, so

the new value of b is also a reference to that same list!

What about mutable objects?

All variables store
references to objects

In code: In memory:

a = [4, 5]

b = a

0 1

4 5

list

a

bb[0] = 1  

print(a)

1

[1, 5] # !!!
More than one variable can
refer to the same object.

Don't make this mistake

you did not just create a copy of a

To create a true copy of a mutable object, you can't
simply assign the object to a new variable.

a = [1, 2, 3]
b = a

List elements store
references to objects

In code: In memory:

a = [4, 5] 0 1

1 5

lista

I lied to you again!

List elements are just like variables!

List elements store
references to objects

In code: In memory (the true picture):

a = [4, 5] 0 1
lista

List elements are just like variables!

int

4
int

5

0 1 2 3 4
list

weather

int

63 str
"light rain"

int

8
str

"SSW"

float

29.75

weather = [63, "light rain", 8, "SSW", 29.75]

List elements store
references to objects

0 1 2 3 4
list

weather

int

63
int

8
str

"SSW"

float

29.75

weather = [63, "light rain", 8, "SSW", 29.75]
weather[1] = "cloudy"

str
"light rain"

List elements store
references to objects

0 1 2 3 4
list

weather

int

63
int

8
str

"SSW"

float

29.75

weather = [63, "light rain", 8, "SSW", 29.75]
weather[1] = "cloudy"

str

"cloudy"
str

"light rain"

List elements store
references to objects

0 1 2 3 4
list

weather

int

63
int

8
str

"SSW"

float

29.75

weather = [63, "light rain", 8, "SSW", 29.75]
weather[1] = "cloudy"

str

"cloudy"
str

"light rain"

List elements store
references to objects

Example

weather = [63, "light rain"]
tomorrow_weather = weather
tomorrow_weather[0] = 68
print(weather[0])

Draw and update the memory diagram
as the following code is executed.

t
68 o

Creating lists vs
Creating references

• A list literal creates a new list 

• List assignment does not create a new list 

• List concatenation creates a new list  

• List slicing creates a new list  

a = [4, 5, 6]

b = a

c = a + b

d = a[:1]

A few more list operations:
my_list.index(value)  
Return the index of the first occurrence of value in my_list  
Throw an error if value is not in my_list.

my_list.insert(index, value)  
Inserts value into my_list at index, shifting all following elements one
spot to the right.

my_list.remove(value)  
Removes the first item from the list whose value is equal to value.
Causes an error if value is not in my_list.

del my_list[index]  
Removes the element at index, shifting all following elements one spot
to the left.

abc = ["B", "C"]
abc.index("C")
abc.index("F")
abc.insert(0, "A")
abc.remove("C")
abc.remove("F")
del abc[0]

index, insert, remove, del:
Demo

Problem 3
Write a function that returns a true copy (i.e., a different
list object containing the same values) of a given list.

def copy_list(in_list):
 """ Return a new list object containing
 the same elements as in_list.
 Precondition: in_list's contents are
 all immutable. """

Hint: one possible approach uses a loop and the append method.

Problem 4

def snap(avengers):
 """ Remove a randomly chosen half of the
 elements from the given list of avengers
 """

