
CSCI 141
Scott Wehrwein

Dictionaries

Goals
• Know the basics of how to use dictionaries (dicts):

• Creation, assignment, and indexing

• get method

• in operator

• del statement

• Iterating over keys and values:

• keys, values, and items methods

Dictionaries
• Lists, tuples, strings are all sequences

(their contents are ordered)

• Python also has some types that handle
non-sequential collections, including
dictionaries (type dict):

• A dictionary is a collection of key-value mappings

Dictionaries
Another way to think about lists:

A list is a mapping

from integer indices

to arbitrary values.

["B", "A", 7]

Example:

represents the following mapping:

0: "B"

1: "A"

2: 7

the index 0 maps
to the value "B"

Dictionaries
Another way to think about lists:

A list is a mapping

from integer indices

to arbitrary values.

A dictionary is a mapping

from arbitrary immutable keys

to arbitrary values.

["B", "A", 7]

Example:

represents the following mapping:

0: "B"

1: "A"

2: 7

the index 0 maps
to the value "B"

{"B": 6, "A": 7}
represents the following mapping:

"B": 6

"A": 7

the key B maps to
the value 6

Dictionaries
Why do we want this?

english = {}
english["aardvark"] = """a nocturnal burrowing
mammal with long ears, a tubular snout, and a
long extensible tongue, feeding on ants and
termites. Aardvarks are native to Africa and have
no close relatives."""

Suppose I want to store...

Dictionaries
Why do we want this?

sections = {}
sections[20769] = ["W0183782", "W0243810", # ...
sections[23512] = ["W0184582", "W0182368", # ...
...

Suppose I want to store...

A list of W#s of all the students in each of the lab sections.

Dictionaries
Why do we want this?

employee = {"First": "Scott",
 "Last": "Wehrwein",
 "Type": "Faculty",
 "W#": 98765438,
 # ...}

Suppose I want to store...

A bunch of different information about a WWU employee:

Dictionaries
Why do we want this?

Suppose I want to store...

The number of students with each letter grade in my class:

grade_counts = {"A": 6, "B": 12, "C": 8, "D": 2}

Dictionaries: Let's play

Dictionaries: Let's play
create a dict:
grades = {"A": 10, "B": 18, "C": 6, "D": 2}
grades["A"] # => 10
grades["B"] # => 18
grades["E"] # KeyError
grades["E"] = "Huh?" # new mapping
grades["A"] = 12 # overwrites existing value
"F" in grades # => False
"E" in grades # => True
del grades["E"] # removes "E" and its value
"E" in grades # => False

Dictionaries: Let's play
several ways to access values:
grades["A"] # => 12
grades.get("A") # => 12

get method never causes an error
grades["Q"] # KeyError
grades.get("Q") # => None (no error!)

get can take a default value to
return if the key isn't found:
grades.get("A", 0) # => 12
grades.get("Q", 0) # => 0

Dictionaries: Cheat Sheet
• Creation:  
 d = {key1: value1, key2: value2, ...}

• Access:  
 d[key] # => value, or error if key not in d 
 d.get(key) # => value, or None if key not in d 
 d.get(key, alt) # => value, or alt if key not in d

• Assignment:  
 d[key] = new_value

• Membership:  
 key in d # => True if d[key] exists

• Removal: 
 del d[key] # deletes key and its associated value

if key exists: overwrite old value

otherwise: add new key-value mapping

Iterating over Dictionaries?
Demo

pop = {"WWU": 16121, "UW": 47899, "WSU": 24470}

Iterating over Dictionaries?
Demo

• for key in d

• d.keys(); list(d.keys())

• for val in d.values()

• key, value in d.items()

• list(d.items())

pop = {"WWU": 16121, "UW": 47899, "WSU": 24470}

Dictionaries: Cheat Sheet
• Creation:  
 d = {key1: value1, key2: value2, ...}

• Access:  
 d[key] # => value, or error if key not in d 
 d.get(key) # => value, or None if key not in d 
 d.get(key, alt) # => value, or alt if key not in d

• Assignment:  
 d[key] = new_value

• Membership:  
 key in d # => True if d[key] exists

• Removal: 
 del d[key] # deletes key and its associated value

if key exists: overwrite old value

otherwise: add new key-value mapping

Dictionary Iteration: Cheat Sheet
d = {key1: value1, key2: value2, ...}

for key in d:  
 print(key)

for key in d.keys():  
 print(key)

for val in d.values():  
 print(val)

for (key, val) in d.items():  
 print(key, val, sep=": ")

Note 1: Like range, these
methods return sequences that
are not lists. To get a list of values
use list(d.values()).

Note 2: In Python <3.7, you can't
rely on the key ordering being the
same. In 3.7+, the order matches
insertion order.

