
CSCI 141
Scott Wehrwein


List Methods

Mutability



Goals
• Know how to use the assignment operator on 

list elements and slices


• Know how to use the list methods append, 
and extend


• Know the definition of mutability, and which 
sequence types are mutable (lists) and 
immutable (strings, tuples)



Lists vs Strings: What's the 
difference?

1. Strings hold only characters, while lists 
can hold values of any type(s).

...haven't we seen this before?

("alpaca", 14, 27.6)

Tuples are also objects that hold a sequence of 
values of any type(s).



Lists vs Tuples: What's the 
difference?

a_tuple = ("a", 14, 27.6)
a_list = ["a", 14, 27.6]
 
a_tuple[1] # => 14
a_list[1] # => 14  

a_tuple[1] = 0 # causes an error
a_list[1] = 0 # a_list is now ["a", 0, 27.6] 

Tuples are also objects that hold a sequence of 
values of any type(s).

Tuples are immutable: their contents cannot be changed. 

Lists are mutable: their contents can be changed. 



Lists are mutable
a_list = ["a", 14, 27.6]

["a", 14, 27.6]a_list



Lists are mutable
a_list = ["a", 14, 27.6]

a_list[0] = "b"

["b", 14, 27.6]a_list



Lists are mutable
a_list = ["a", 14, 27.6]

a_list[0] = "b"

a_list.append(19)

["b", 14, 27.6, 19]a_list

append takes a single value and adds it to the end of the list.



Lists are mutable
a_list = ["a", 14, 27.6]

a_list[0] = "b"

a_list.append(19)

a_list.append(["12", 2])

["b", 14, 27.6, 19, ["12", 2]]a_list

notice: still a single argument (happens to be a list)



Lists are mutable
a_list = ["a", 14, 27.6]

a_list[0] = "b"

a_list.append(19)

a_list.append(["12", 2])

["b", 14, 27.6, 19, ["12", 2], 22, 23]

a_list.extend([22, 33])

a_list

extend takes a sequence and adds each value to the list.



Lists are mutable
Notice the difference between string methods and list methods:

a_list.append(19)

new_string = a_string.lower()

["b"]a_list

"JON"a_string



Lists are mutable
Notice the difference between string methods and list methods:

a_list.append(19)

new_string = a_string.lower()

• modifies the list in-place

• has no return value

["b", 19]a_list

"JON"a_string



Lists are mutable
Notice the difference between string methods and list methods:

a_list.append(19)

new_string = a_string.lower()

• modifies the list in-place

• has no return value

• does not modify a_string

• returns a lower-case copy

["b", 19]a_list

new_string "jon"

"JON"a_string



Slicing, Revisited
a = [5, 6, 7, 8]

a[0:3] # => [5, 6, 7]

Unlike list methods, slicing yields a new list.

It does not modify the list.

a # => [5, 6, 7, 8]

Indexing yields a list element; slicing yields a sublist:

a[1:2] # => [6] a list of length 1!
a[1] # => 6 indexing yields a list element

a list of length 0!a[1:1] # => []



List assignment + slicing
We can assign to indices: 
 
 

We can slice out sublists: 

Can we assign to slices?

a = [5, 6, 7, 8]
a[0] = 10

a[0:3] # => [10, 6, 7]

You betcha! (demo)



List assignment + slicing: 
Demo

a = [5, 6, 7, 8]
a[:2] = [3, 4]

a = [5, 6, 7, 8]
a[:3] = a[1:]

a = [5, 6, 7, 8]
a[:2] = a[1:]



Demo: What are lists good 
for?

• Generate a list of the fibonacci sequence


• fib_list.py


• Make a deck of cards and deal a blackjack 
hand


• blackjack.py


• Make a bale of turtles do some crazy stuff.


• bale.py



Demo: a bale of turtles
• bale.py


