
CSCI 141
Scott Wehrwein

String Comparisons and Ordering

Goals
• Understand the behavior of the following

operators on strings:

• <, >, ==, !=, in, and not in

• Understand how Python orders strings using lexicographic
ordering

Operators on Strings
Familiar:

+ concatenation

* repetition

[] indexing, slicing

== equals

!= not equals

"a" + "b" => "ab"

"ha" * 3 => "hahaha"

"batman"[:3] => "bat"

"antman" != natman" => True

"antman" == "natman" => False

String operators
Unfamiliar, but intuitive:

in  
 
 
 

not in: exactly what you think (opposite of in)

"a" in "abc". # => True
"dab" in "abacadabra" # => True
"A" in "abate" # => False
"eye" in "team" # => False

String operators

Inequality comparisons follow lexicographic ordering:

• Order based on the first character

• If tied, use the next character,

• and so on

much like in a dictionary

These are all True:

"a" < "b"
"ab" < "ac"
"a" < "aa"
"" < "a"

Familiar, but (a little) unintuitive:

<, >

String operators
Familiar, but (a little) unintuitive:

<, >

Caveat: lexicographic ordering is case-sensitive, and ALL
upper-case characters come before ALL lower-case letters:

These are all True:

"A" < "a"
"Z" < "a"
"Jello" < "hello"

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Tie - next character

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Tie - next character

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Tie - next character

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Tie - next character

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

i > e, so "Bellingham" > "Bellevue"

Aside:

"Bell" < "Bellingham" => True

When all letters are tied, the shorter word comes first.

Lexicographic Ordering:
Aside

"?" < "!" # =>

The ord function takes a character and returns its
numerical (ASCII) code, which determines its ordering.

The chr function takes a numerical (ASCII) code and
returns the corresponding character.

ord("?") # => 63
ord("!") # => 33 "?" < "!" # => False

???

