
CSCI 141
Scott Wehrwein

Defining Functions

Goals
• Know the syntax for defining your own

functions

• Know how to define and use functions that
take no arguments and return no values

Functions, Revisited
• We’ve been using functions since day 1:

• Built-in functions so far:  
print, input, type, len, int, str, ...

• We can import more functions: 
import math  
import turtle  
math.sqrt(4)  
turtle.Turtle()

print("Hello, World!")

Functions, Revisited
What is a function, anyway?
It’s a chunk of code with a name.

• It may take arguments as input

• It may do something that has an effect

• It may return a value

Input(s):
• 0 or more values

• (optional) sep and end

keywords

Effects: prints arguments to the screen,

with given separator and end

Return value:
• none

print

print("Hello world")

Functions, Revisited
What is a function, anyway?

input

It’s a chunk of code with a name.

• It may take arguments as input

• It may do something that has an effect

• It may return a value

Input(s): Return value:

Effects:

• none, or

• a string to print as a

prompt

prompts for user input and
reads it from the keyboard

• the input from the user

input(“Enter a number:”)

Functions, Revisited
What is a function, anyway?

type

It’s a chunk of code with a name.

• It may take arguments as input

• It may do something that has an effect

• It may return a value

Input(s): Return value:

Effects:

• a value

none

• the type of the value

type(6/2)

Functions, Revisited
What is a function, anyway?

math.sin

It’s a chunk of code with a name.

• It may take arguments as input

• It may do something that has an effect

• It may return a value

Input(s): Return value:

Effects:

• a number

none

• the sine of the value

math.sin(math.pi/2)

Functions, Revisited
What is a function, anyway?

scott.forward

It’s a chunk of code with a name.

• It may take arguments as input

• It may do something that has an effect

• It may return a value

Input(s): Return value:

Effects:

• a number

moves the turtle forward by
the given number of units

• none

Functions, Revisited
What is a function, anyway?
• So far we’ve treated functions as “black boxes”,

code someone else wrote that does stuff for us.

• All we know are the inputs, effects, and return value.

• We don’t know how it’s done.

Input(s) Return value
(Effects)

This is a great
situation to be in!

A bunch of (potentially
complicated), powerful stuff

is wrapped up in a nice,
easy-to-use package.

What if
You want a nice easy-to-use
function that does something
complicated, but nobody else
has written it for you…

Now, you will have the power
to write your own functions.

Writing Functions: Syntax

def name(parameters):
 statements

Two important questions:

1. How does the function use its arguments (inputs)?

2. How does the function return a value (output)?

Let’s dodge these questions for a moment…

Functions: the simplest kind
No arguments, no return value:

def name():
 statements

def print_hello():
 print("Hello, world!")

Example:

The print_hello function

print_hello

Input(s): Return value:

Effects:

• none

prints "Hello" to the screen

• none

Demo
• hello_fn.py

Demo: hello_fn.py
• define print_hello function

• The definition does nothing except make the
function exist

• call it using print_hello()

• you can call it whenever/however many times

• except you can’t call it before it’s defined

