
CSCI 141
Scott Wehrwein

Program Execution: Statements and Expressions

Function Calls: Return Values

Goals
• Understand the distinction between a

statement and an expression

• Understand function calls as expressions that
evaluate to their return values

Statements and
Expressions

• A statement is a line (or multiple lines) of code that Python
can execute.

• An expression is a combination of values, variables,
operators, and function calls that Python evaluates to
determine its value.

my_name = “Scott” is an assignment statement

type(32)
2+2
int(a)
int(b) * 4
are all expressions

The notation => is often used to
mean “evaluates to”:

2 + 2 => 4
“two plus two evaluates to four”

A statement in Python does not evaluate to a value!

Note: => is not a Python operator

Function Calls, Revisited
• Recall: function can take inputs called

arguments

• New: A function can give back an output,
called its return value.

• A function call is an expression that
evaluates to its return value.

int(7.9)

my_val = int(7.9)

Some functions return values
Examples:

int returns an int
float returns a float
str returns a str

input returns a str

print does not return a value

None is a special keyword meaning no value
if used as an expression, it evaluates to None

int(4.6) returns 4
str(4.6) returns "4.6"

input returns whatever
text the user entered

A function call evaluates to
its return values

Examples:

float(int(6.8)) evaluates to 6.0

name = input("Enter your name")

Note: input always returns a str

stores whatever the user typed in the variable name

because
 int(6.8) evaluates to 6
float(6) evaluates to 6.0

Beware!
input always returns a str

Implication:

ask for a number
a = input("Enter a number: ")
but a is a string, so we need to:
user_number = float(a)
now user_number has type float

we can do it in one line:
a = float(input("Enter a number:"))

Putting it all together
• Consider this program:

• What happens when we execute it?

a = 4
b = float(2 + a)

Putting it all together
• Consider this program:

• What happens when we execute it?

• the value 4 gets stored in a

a = 4
b = float(2 + a)

Putting it all together
• Consider this program:

• What happens when we execute it?

• the value 4 gets stored in a

• the expression 2+a is evaluated, resulting in the value 6

a = 4
b = float(2 + a)

Putting it all together
• Consider this program:

• What happens when we execute it?

• the value 4 gets stored in a

• the expression 2+a is evaluated, resulting in the value 6

a = 4
b = float(6)

Putting it all together
• Consider this program:

• What happens when we execute it?

• the value 4 gets stored in a

• the expression 2+a is evaluated, resulting in the value 6

• 6 is passed into the float function

a = 4
b = float(6)

Putting it all together
• Consider this program:

• What happens when we execute it?

• the value 4 gets stored in a

• the expression 2+a is evaluated, resulting in the value 6

• 6 is passed into the float function

• the float function converts 6 to a float and returns 6.0

a = 4
b = 6.0

Putting it all together
• Consider this program:

• What happens when we execute it?

• the value 4 gets stored in a

• the expression 2+a is evaluated, resulting in the value 6

• 6 is passed into the float function

• the float function converts 6 to a float and returns 6.0

• the value 6.0 gets stored in variable b

a = 4
b = 6.0

Putting it all together
• In what order do things get evaluated?

• A function’s arguments are always
evaluated left-to-right before it is called: 

print(2+2, 4+6, int(10.4))

print(4, 4+6, int(10.4))

print(4, 10, int(10.4))

print(4, 10, 10)

4 10 10 is printed to the console

Demo

Demo
• storing input's return value in a variable and

converting its type

• function call with no return value (e.g., print)

• The Thonny Shell is a REPL 
(read-evaluate-print loop).

• An expression on its own line in a program vs expression
in the Thonny shell

