
CSCI 141
Spring 2021
Assignment 1

Topics: Variables, print, input, operators, conditionals

Introduction

For this first assignment, you will write two small Python programs. The following general
guidelines and tips apply to both programs.

Getting Started

Refer to lab 1, as well as the lecture slides, to review what you’ve learned so far. In this and
future assignments, you may not have seen all the topics in lecture before the assignment is
released, but they will be covered well before the deadline. As usual, seek help early if you get
stuck: come talk to me or the TAs during office hours, or visit the CS tutors for help. Please
keep track of how much time you spend on both portions of this assignment. You will be asked
to report your hours on Canvas after you submit. This helps us calibrate the workload for the
rest of the quarter, and for future quarters. It’s also useful information about your own study
patterns!

Collaboration and Academic Honesty

The programs you write solution MUST be authored solely by you. You can discuss the
problems with your peers, but these discussions should happen without Thonny (or your IDE
of choice) open, and you should take a break before returning to write code to help ensure that
you truly understand the answers. You may not copy another person’s code, or have another
person tell you what code to type. If you have any questions, or are unsure about whether a
specific sort of collaboration violates academic honesty, please come talk to me.

Coding Style

All your programs must have a comment at the top stating the author, date, and a short
description of your program. You should also include comments elsewhere in your code anytime
you think it’s helpful to outline is happening. Be sure to include a comment when your code
does something non-obvious and a reader of your code would benefit from some explanation.

Your code should be written as clearly as possible (i.e., try to avoid the need for explanatory
comments). Variable names should follow the guidelines discussed in lecture for sensible naming:
neither too verbose nor too terse.

Valid Input and Error Checking

You may assume that the user is well-behaved and enters data as prompted. Your program is
not required to check the user’s input to make sure it’s well-formed. Your program is allowed
to throw an error if the input is bad (i.e., the user enters a string instead of a number).



Testing

Testing is a major component in the process of writing software. Often, testing (detecting
errors) and debugging (locating and fixing errors) takes way more effort than writing the code
did in the first place. We’ll talk more about testing as the quarter progresses; in the meantime,
for each problem below we provide a table with some helpful test cases that you can use to see
if your program is working correctly. Try your code out with the given inputs and make sure
your output matches the program output specified in the table.

1 Mortgage Calculator

Many online real estate websites have mortgage calculator features1. These calculators ask for
some information, such as the price of a home, the down payment (amount of the home price
you’d pay up front), and the interest rate, then calculate the amount you’d have to pay monthly
on a loan for the home.

According to NerdWallet2, the formula used to calculate the monthly payment based on these
inputs is as follows:

M = (P −D)
r(1 + r)N

(1 + r)N − 1

Where:

M = The monthly payment

P = The price of the home

D = The down payment amount

N = The number of months over which the loan will be paid off

r = R ∗ .01/12, the monthly interest rate (the yearly percentage converted to a decimal and divided by 12)

Write a program called mortgage.py that prompts the user to enter (one at a time, and in
exactly the given order order) values for P,D,N, and R, and outputs the monthly payment
amount M . Notice that you are asked to prompt the user for R, the annual interest rate as a
percentage (e.g., 3.7), but the formula uses r, the monthly interest rate (e.g., 0.037).

A sample invocation of the program is shown in Figure 1.

Test Cases

For brevity, the output is truncated after 3 decimal places in the table below; your program
will output more decimal places (as in the example invocation).

1See https://www.zillow.com/mortgage-calculator/ for an example
2Go to https://www.nerdwallet.com/mortgages/mortgage-calculator/calculate-mortgage-payment and click

“How to calculate your mortgage payment” for the source of the formula



Figure 1: Sample Output

P D N R Output (M)

100000 20000 360 3.7 368.226

1000000 10 180 3.4 7099.747

549050 103200 800 5.1 1960.773

2 Modulo Helper

Congratulations! You’ve just been hired as a Python programmer at an education start-up
company. Your first task is to develop a prototype of a program that CS students will use to
check their understanding of modulo. The program first prompts the user to enter two positive
integers (number 1 and number2 ). The program then asks the user to solve number 1 mod
number 2 and number 2 mod number 1, checkinging the user’s answer for each. In total the
program prints 11 lines, two of which are blank, each time the program runs:

1. Ask the user to enter number 1

2. Ask the user to enter number 2

3. Ask them what is number 1 modulo number 2

4. Tell them if they got it right or wrong

5. Tell the detailed correct answer

6. (blank line)

7. Ask them what is number 2 modulo number 1

8. Tell them if they got it right or wrong

9. Tell the detailed correct answer

10. (blank line)

11. Output the user’s score out of 2

All numerical outputs must be integers (whole numbers, without decimals). A sample invocation
of the program is shown in Figure 2:

Although this is a simple set of steps, there are many, many different Python programs that can
achieve it. The text of your prompts does not need to match the example exactly. However,
your solution must follow the instructions above exactly as specified.



Figure 2: Sample Output

Test Cases

First Integer Second Integer number 1, number 2 number 2, number 1

7 5 1 remainder 2 0 remainder 5

3 3 1 remainder 0 1 remainder 0

1 678 0 remainder 1 678 remainder 0

8364724 9738 858 remainder 9520 0 remainder 9738

Submission

Double check that your programs work according to the specification and produce the output
given in the test cases. Take a look through the rubric below and make sure you won’t lose
points for reasons that could easily be foreseen and fixed. When you’re finished, submit each
of your programs as a .py file named modhelper.py and mortgage.py, respectively. Finally,
fill out the A1 Survey on Canvas.

Rubric

mortgage.py (15 points)
Author, date, and program description given in a comment at the top of the file 1 point

Code is commented adequately and variables are appropriately named 1 points

Prompts for the correct values 4 points

Prompts for the values in the correct order 4 points

Produces the correct output 5 points

mod helper.py (20 points)



Author, date, and program description given in a comment at the top of the file 1 point

Code is commented adequately and variables are appropriately named 1 points

Code gives appropriate feedback to getting an answer right or wrong 1 point

Prompts for number 1 and number 2 2 points

Number 1 modulo number 2 prints on the right line 3 points

Detailed answer to number 1 modulo number 2 prints on the right line 3 points

Number 2 modulo number 1 prints on the right line 3 points

Detailed answer to number 2 modulo number 1 prints on the right line 3 points

Correct score prints on the right line 3 points

3 Optional: Challenge Problem

Some assignments will come with an optional challenge problem. In general, these problems will
be worth very small amounts of extra credit: this one is worth up to two points. Though the
grade payoff is small, you may find them interesting to work on and test your skills in Python
and algorithm development. The skills and knowledge needed to solve these problems are not
intended to go beyond those needed for the base assignment, but less guidance is provided and
more decisions are left up to you. The A1 challenge problem is as follows:

Write a program that takes command line arguments representing the hours and minutes of two
times of day, and prints the number of minutes between them. Your program needs to work for
time ranges that cross hour boundaries (e.g., 7:59 to 8:01) and day boundaries (e.g., 6:00AM
to 5:00AM). You’ll earn 1 point if your program takes the times of day in 24-hour format. For
2 points, the program should handle 12-hour times with AM or PM attached.

Because I haven’t specified the details of how the user specifies the inputs, you should be sure
to document this clearly: In addition to the Author, Date, and Description comments at the
top of your program, include a ”Usage” comment that explains how the program should be
called, including at least one example run and the corresponding output.

Upload your challenge program to Canvas in a file called minutes.py.


	Mortgage Calculator
	Modulo Helper
	Optional: Challenge Problem

