
CSCI 141
Lecture 22


References and Functions

Lists and Dictionaries: methods and manipulations



Happenings
Tuesday, 5/28 – CS Poster Session!  
– 3 – 5 pm in the 4th Floor Hallway!

Tuesday, 5/28 – ACM Research Talk: Machine Learning with Dr. Hutchinson  
– 5 pm in CF 316

Tuesday, 5/28 – Peer Lecture Series: Machine Learning Workshop  
– 5 pm in CF 165

Tuesday, 5/28 – Artificial Intelligence Presents: Machine Learning!  
– 6 pm in PH 228

Thursday 5/30 – CS Picnic!  
– 4 – 7 pm at the Lake Padden Playground Picnic Shelter!

https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fcs-poster-session-1&data=02%7C01%7Cwehrwes%40wwu.edu%7C60539721789b4b7275d408d6dfa54a69%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636942298369863731&sdata=hOlOK0Y9goPVmx8aihqd6A%2BPHaiYHhKNvf3DecOcqHM%3D&reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Facm-research-talk-machine-learning-dr-brian-hutchinson&data=02%7C01%7Cwehrwes%40wwu.edu%7C60539721789b4b7275d408d6dfa54a69%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636942298369873725&sdata=%2F%2BlwnErga2ngXu4inw6HW0ss3D%2F6opnKGzvWwGAO04I%3D&reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fpeer-lecture-series-machine-learning-0&data=02%7C01%7Cwehrwes%40wwu.edu%7C60539721789b4b7275d408d6dfa54a69%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636942298369873725&sdata=Q%2B65LrO417zZyGhywujCgKYow4Sc%2BuwyDJIvvP9sQdo%3D&reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Faia-presents-intro-machine-learning&data=02%7C01%7Cwehrwes%40wwu.edu%7C60539721789b4b7275d408d6dfa54a69%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636942298369883718&sdata=Y3v600imj4g8tOE51zUKGV%2FkU92vzp3SCDYYpVFiWDI%3D&reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fend-year-picnic&data=02%7C01%7Cwehrwes%40wwu.edu%7C60539721789b4b7275d408d6dfa54a69%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636942298369883718&sdata=j2ZWCevZRqcET6x4hqOY5KVUGGK163BT8vkI27p0Vbw%3D&reserved=0


Announcements



Announcements
• A5 Code and A5 Written are out.



Announcements
• A5 Code and A5 Written are out.

• No class or office hours Monday



Announcements
• A5 Code and A5 Written are out.

• No class or office hours Monday

• No lab next week



Announcements
• A5 Code and A5 Written are out.

• No class or office hours Monday

• No lab next week

• Office hours Tuesday from 12ish to 3



A5 Code

xkcd.com/1838

http://xkcd.com/1838


Goals
• Understand the implications of variables holding 

references to mutable objects: 


• function parameters can refer to objects that are also 
referred to by global variables


• Know how to modify lists using the following: insert, 
remove, del


• Know the basics of how to use dictionaries (dicts):


• Creation, assignment, indexing


• in, del, iterating over keys and values



Last Time
• Understand the implications of variables holding 

references to mutable objects: multiple variables can 
refer to the same object


• Know how to modify lists using indexed assignment, 
slice assignment

a = [1, 2, 3]
b = a
b[2] = 1
print(a[1:])

What does the code below print?



Last Time
• Understand the implications of variables holding 

references to mutable objects: multiple variables can 
refer to the same object


• Know how to modify lists using indexed assignment, 
slice assignment

a = [1, 2, 3]
b = a
b[2] = 1
print(a[1:])

A.  [1, 2, 3]
B.  [2, 3]
C.  [1, 2, 1]
D.  [2, 1]

What does the code below print?



Last Time
Nuance: what if we assign a slice instead?

a = [1, 2, 3]
b = a[1:3]
b[1] = 1
print(a[1:])

What does the code below print?



Last Time
Nuance: what if we assign a slice instead?

a = [1, 2, 3]
b = a[1:3]
b[1] = 1
print(a[1:])

A.  [1, 2, 3]
B.  [2, 3]
C.  [1, 2, 1]
D.  [2, 1]

What does the code below print?



Last Time
• Know the basics of how to use dictionaries 

(dicts):


• Creation, assignment, indexing

gc = {"A": 8, "B": 12, "C": 6}
gc["A"] += 1
gc["C"] -= 1
gc["D"] = 1
print(gc["C"] + gc["D"])

What does the code below print?



Last Time
• Know the basics of how to use dictionaries 

(dicts):


• Creation, assignment, indexing

gc = {"A": 8, "B": 12, "C": 6}
gc["A"] += 1
gc["C"] -= 1
gc["D"] = 1
print(gc["C"] + gc["D"])

A.  5
B.  6
C.  7
D.  error

What does the code below print?



Back to Mutability and 
Functions

• Lists and dictionaries are mutable: you can 
change their contents.


• Strings, tuples, ints, and floats, are immutable: 
you can't change their value.

s = "Arya"
s

str

"Arya"



Back to Mutability and 
Functions

• Lists and dictionaries are mutable: you can 
change their contents.


• Strings, tuples, ints, and floats, are immutable: 
you can't change their value.

s = "Arya"
s = s.upper()

s
str

"Arya"



Back to Mutability and 
Functions

• Lists and dictionaries are mutable: you can 
change their contents.


• Strings, tuples, ints, and floats, are immutable: 
you can't change their value.

s = "Arya"
s = s.upper()

s
str

"Arya"

str

"ARYA"



Implications of Mutability
weather = [63, "light rain"]
tomorrow = weather
tomorrow[0] = 68
print(weather[0])

0 1
list

weather

int

68
str

"light rain"

After creating the initial list:

tomorrow



Implications of Mutability
weather = [63, "light rain"]
tomorrow = weather
tomorrow[0] = 68
print(weather[0])



Implications of Mutability
weather = [63, "light rain"]
tomorrow = weather
tomorrow[0] = 68
print(weather[0])

More than one variable can refer to the same object.



Implications of Mutability
weather = [63, "light rain"]
tomorrow = weather
tomorrow[0] = 68
print(weather[0])

More than one variable can refer to the same object.

Changes to an object via one variable are reflected 
when accessing it via another variable!



Implications of Mutability
weather = [63, "light rain"]
tomorrow = weather
tomorrow[0] = 68
print(weather[0])

More than one variable can refer to the same object.

To create a true copy of a mutable object, you can't 
simply assign a new variable to the object.

Changes to an object via one variable are reflected 
when accessing it via another variable!



Mutable Objects and Functions
When you pass a list into a function, you're 
actually passing a reference to the list:



Mutable Objects and Functions
When you pass a list into a function, you're 
actually passing a reference to the list:

(or any mutable object!)



Mutable Objects and Functions
When you pass a list into a function, you're 
actually passing a reference to the list:

def z1(a_list):
    a_list[0] = 0

a = [1, 1, 1]
z1(a)
print(a)

(or any mutable object!)



Mutable Objects and Functions

def z1(a_list):
    a_list[0] = 0

a = [1, 1, 1]
z1(a)
print(a)

When you pass a list into a function, you're 
actually passing a reference to the list:



Mutable Objects and Functions

def z1(a_list):
    a_list[0] = 0

a = [1, 1, 1]
z1(a)
print(a)

a_list points to the same 
list as the global variable a

When you pass a list into a function, you're 
actually passing a reference to the list:



Mutable Objects and Functions

def z2(a_list):
    a_list = []

a = [1, 1, 1]
z2(a)
print(a)

When you pass a list into a function, you're 
actually passing a reference to the list:



Mutable Objects and Functions

def z2(a_list):
    a_list = []

a = [1, 1, 1]
z2(a)
print(a)

The local variable a_list 
is reassigned to point to a 
new (different) list

When you pass a list into a function, you're 
actually passing a reference to the list:



Mutable Objects and Functions

def z2(a_list):
    a_list = []

a = [1, 1, 1]
z2(a)
print(a)

The local variable a_list 
is reassigned to point to a 
new (different) list
 
The list referenced by a is 
unchanged.

When you pass a list into a function, you're 
actually passing a reference to the list:



Mutable Objects and Functions
When you pass a list into a function, you're 
actually passing a reference to the list:

def z3(x):
    a_list = [x, x, x]
    return a_list
b = 2
a = z3(b)
print(a)



Mutable Objects and Functions
When you pass a list into a function, you're 
actually passing a reference to the list:

def z3(x):
    a_list = [x, x, x]
    return a_list
b = 2
a = z3(b)
print(a)

The function creates a new 
list, with the local variable 
a_list referring to it. 



Mutable Objects and Functions
When you pass a list into a function, you're 
actually passing a reference to the list:

def z3(x):
    a_list = [x, x, x]
    return a_list
b = 2
a = z3(b)
print(a)

The function creates a new 
list, with the local variable 
a_list referring to it. 

The reference to the list is 
returned and assigned to a.



Worksheet - Exercise 1
Write a function that returns a true copy (i.e., a 
different list object containing the same values).
def copy_list(in_list):
    """ Return a new list object containing
        the same elements as in_list.
        Precondition: in_list's contents are
        all immutable. """



Worksheet - Exercise 1
Write a function that returns a true copy (i.e., a 
different list object containing the same values).
def copy_list(in_list):
    """ Return a new list object containing
        the same elements as in_list.
        Precondition: in_list's contents are
        all immutable. """

Hint: one possible approach uses a loop and the append method.



Worksheet - Exercise 1
Write a function that returns a true copy (i.e., a 
different list object containing the same values).
def copy_list(in_list):
    """ Return a new list object containing
        the same elements as in_list.
        Precondition: in_list's contents are
        all immutable. """

Hint: one possible approach uses a loop and the append method.

When done, complete Exercise 1A: 

Draw the memory diagram for the 
following code snippet:

a = [1, 2]
b = copy_list(a)
b[0] = 0



A few more list operations:



A few more list operations:
my_list.index(value)  
Return the index of value in my_list 
Throw an error if value is not in my_list.



A few more list operations:
my_list.index(value)  
Return the index of value in my_list 
Throw an error if value is not in my_list.

my_list.insert(index, value)  
Inserts value into my_list at index, shifting all following elements on 
spot to the right.



A few more list operations:
my_list.index(value)  
Return the index of value in my_list 
Throw an error if value is not in my_list.

my_list.insert(index, value)  
Inserts value into my_list at index, shifting all following elements on 
spot to the right.

my_list.remove(value)  
Inserts value into my_list at index, shifting all following elements one 
spot to the right.



A few more list operations:
my_list.index(value)  
Return the index of value in my_list 
Throw an error if value is not in my_list.

my_list.insert(index, value)  
Inserts value into my_list at index, shifting all following elements on 
spot to the right.

my_list.remove(value)  
Inserts value into my_list at index, shifting all following elements one 
spot to the right.

del my_list[index]  
Removes the element at index, shifting all following elements one spot 
to the left.



index, insert, remove, del: 
Demo



abc = ["B", "C"]
abc.index("C")
abc.index("F")
abc.insert(0, "A")
abc.remove("C")
abc.remove("F")
del abc[0]

b = []
a.insert(0, b)
b[0] = 4
a.insert(0, 4]

index, insert, remove, del: 
Demo



What does this print?
a = []
b = [1]
a.insert(0, b)
b[0] = 4
a.insert(0, b)
print(a)



What does this print?
a = []
b = [1]
a.insert(0, b)
b[0] = 4
a.insert(0, b)
print(a)

A.  [1, 4]
B.  [4, 4]
C.  [[1], [4]]
D.  [[4], [4]]



Dictionaries: TL;DR



Dictionaries: TL;DR
• Creation:  
 d = {key1: value1, key2: value2, ...}



Dictionaries: TL;DR
• Creation:  
 d = {key1: value1, key2: value2, ...}

• Access:  
 d[key] # => value, or error if key not in d 
 d.get(key) # => value, or None if key not in d 
 d.get(key, alt) # => value, or alt if key not in d



Dictionaries: TL;DR
• Creation:  
 d = {key1: value1, key2: value2, ...}

• Access:  
 d[key] # => value, or error if key not in d 
 d.get(key) # => value, or None if key not in d 
 d.get(key, alt) # => value, or alt if key not in d

• Assignment:  
 d[key] = new_value



Dictionaries: TL;DR
• Creation:  
 d = {key1: value1, key2: value2, ...}

• Access:  
 d[key] # => value, or error if key not in d 
 d.get(key) # => value, or None if key not in d 
 d.get(key, alt) # => value, or alt if key not in d

• Assignment:  
 d[key] = new_value

• Membership:  
 key in d # => True if d[key] exists



Dictionaries: TL;DR
• Creation:  
 d = {key1: value1, key2: value2, ...}

• Access:  
 d[key] # => value, or error if key not in d 
 d.get(key) # => value, or None if key not in d 
 d.get(key, alt) # => value, or alt if key not in d

• Assignment:  
 d[key] = new_value

• Membership:  
 key in d # => True if d[key] exists

• Removal: 
 del d[key] # deletes key and its associated value



Worksheet - Exercise 2
def count(values):
    """ Return a dictionary that maps each element of values to
        the number of times it appears in the list.
        Precondition: values is a list of immutable objects """

• Creation:  
 d = {key1: value1, key2: value2, ...}

• Access:  
 d[key] # => value, or error if key not in d 
 d.get(key) # => value, or None if key not in d 
 d.get(key, alt) # => value, or alt if key not in d


• Assignment:  
 d[key] = new_value

• Membership:  
 key in d # => True if d[key] exists



Dictionaries: Iterating



Dictionaries: Iterating
d = {key1: value1, key2: value2, ...}



Dictionaries: Iterating
d = {key1: value1, key2: value2, ...}

for key in d:  
    print(key)



Dictionaries: Iterating
d = {key1: value1, key2: value2, ...}

for key in d:  
    print(key)

for key in d.keys():  
    print(key)



Dictionaries: Iterating
d = {key1: value1, key2: value2, ...}

for key in d:  
    print(key)

for key in d.keys():  
    print(key)

for val in d.values():  
    print(val)



Dictionaries: Iterating
d = {key1: value1, key2: value2, ...}

for key in d:  
    print(key)

for key in d.keys():  
    print(key)

for val in d.values():  
    print(val)

for (key, val) in d.items():  
    print(key, val, sep=": ")



Dictionaries: Iterating
d = {key1: value1, key2: value2, ...}

for key in d:  
    print(key)

for key in d.keys():  
    print(key)

for val in d.values():  
    print(val)

for (key, val) in d.items():  
    print(key, val, sep=": ")

Note: Like range, these methods return sequences that are not lists. 

 To get a list of values use list(d.values())



Worksheet - Exercise 3
def mode(values):
    """ Return the most frequently-appearing value in values,
        or one of the most frequent values in case of a tie.
        Precondition: values is a list of immutable objects
    """



Worksheet - Exercise 3

• Hint: use your count function, then find the 
key whose value is largest.

def mode(values):
    """ Return the most frequently-appearing value in values,
        or one of the most frequent values in case of a tie.
        Precondition: values is a list of immutable objects
    """


