
CSCI 141
Lecture 21

Mutability; Variables are References: Implications

Intro to Dictionaries

Announcements

Announcements
• A5 Code out this afternoon. Get started early!

Announcements
• A5 Code out this afternoon. Get started early!

• It's worth 100 points.

Announcements
• A5 Code out this afternoon. Get started early!

• It's worth 100 points.

• A5 Written out SoonTM

Announcements
• A5 Code out this afternoon. Get started early!

• It's worth 100 points.

• A5 Written out SoonTM

• It'll be worth ~20-30 points, and is primarily intended to help you
identify things you need to study for the final exam.

Announcements
• A5 Code out this afternoon. Get started early!

• It's worth 100 points.

• A5 Written out SoonTM

• It'll be worth ~20-30 points, and is primarily intended to help you
identify things you need to study for the final exam.

• No class Monday

Announcements
• A5 Code out this afternoon. Get started early!

• It's worth 100 points.

• A5 Written out SoonTM

• It'll be worth ~20-30 points, and is primarily intended to help you
identify things you need to study for the final exam.

• No class Monday

• No lab next week

Announcements
• A5 Code out this afternoon. Get started early!

• It's worth 100 points.

• A5 Written out SoonTM

• It'll be worth ~20-30 points, and is primarily intended to help you
identify things you need to study for the final exam.

• No class Monday

• No lab next week

• I will move my Monday office hours to Tuesday - time TBA

CS Stories: What’s it like to be a
female professor?

Who: Dr. Sharmin, Dr. Liu, Dr. Islam, AWC professional
guests from industry, alumni, friends, YOU!

What: Creating the space to open about experiences as
students in education with various career goals in
addition to equipping our friends to be allies for
underrepresented friends.

When: Thursday May 23rd from 3-5pm. Doors open
@2:45pm

Where: Wilson Library Reading Room #480 (yes the Harry
Potter Reading Room)

Contact: awc.wwu@gmail.com for more info or questions!
See you there!

Reminder

CS Stories: What’s it like to be a
female professor?

Who: Dr. Sharmin, Dr. Liu, Dr. Islam, AWC professional
guests from industry, alumni, friends, YOU!

What: Creating the space to open about experiences as
students in education with various career goals in
addition to equipping our friends to be allies for
underrepresented friends.

When: Thursday May 23rd from 3-5pm. Doors open
@2:45pm

Where: Wilson Library Reading Room #480 (yes the Harry
Potter Reading Room)

Contact: awc.wwu@gmail.com for more info or questions!
See you there!

Reminder
Just in: there will be ice cream and cookies

Goals
• Understand the implications of variables holding references to

mutable objects:

• multiple variables can refer to the same object

• function parameters can refer to objects that are also referred
to by global variables

• Know how to modify lists using the following:

• indexed assignment, slice assignment, insert, remove,
del

• Know the basics of how to use dictionaries (dicts):

• Creation , assignment, indexing

Last time
• Know how to create, index, slice, and check for membership in lists.

• Understand the behavior of the +, *, in, not in, operators on lists.

• Know how to use the list methods append, and extend

a = ["Tony", "Steve", "Natasha", "T'Challa", "Carol"]

A. ["Steve", "Natasha"]
B. ["Natasha", "T'Challa"]
C. ["Steve"]
D. ["Natasha"]

What is the value of: a[2:3] ?

Last time
• Know how to create, index, slice, and check for membership in lists.

• Understand the behavior of the +, *, in, not in, operators on lists.

• Know how to use the list methods append, and extend

A.5
B.6
C.7
D.8

What is the value of: len(a) ?

a = ["Tony", "Steve", "Natasha", "T'Challa", "Carol"]
a.append(["Bruce", "Peter"])

Last time
• Know how to create, index, slice, and check for membership in lists.

• Understand the behavior of the +, *, in, not in, operators on lists.

• Know how to use the list methods append, and extend

A.5
B.6
C.7
D.8

What is the value of: len(a) ?

a = ["Tony", "Steve", "Natasha", "T'Challa", "Carol"]
a.extend(["Bruce", "Peter"])

List assignment + slicing

List assignment + slicing
We can assign to indices: 
 
 

List assignment + slicing
We can assign to indices: 
 
 

a = [5, 6, 7, 8]
a[0] = 10

List assignment + slicing
We can assign to indices: 
 
 

We can slice out sublists: 

a = [5, 6, 7, 8]
a[0] = 10

List assignment + slicing
We can assign to indices: 
 
 

We can slice out sublists: 

a = [5, 6, 7, 8]
a[0] = 10

a[0:3] # => [5, 6]

List assignment + slicing
We can assign to indices: 
 
 

We can slice out sublists: 

Can we assign to slices?

a = [5, 6, 7, 8]
a[0] = 10

a[0:3] # => [5, 6]

List assignment + slicing
We can assign to indices: 
 
 

We can slice out sublists: 

Can we assign to slices?

a = [5, 6, 7, 8]
a[0] = 10

a[0:3] # => [5, 6]

You betcha! (demo)

List assignment + slicing
slice_assign.py

Last time
• Know the definition of mutability, and which sequence

types are mutable (lists) and immutable (strings, tuples)

a_string = "Scott"
a_tuple = ("a", 14, 27.6)
a_list = ["a", 14, 27.6]

a_string[1] # => "c"  
a_tuple[1] # => 14
a_list[1] # => 14  

a_string[1] = "C" # causes an error
a_tuple[1] = 0 # causes an error
a_list[1] = 0 # a_list is now ["a", 0, 27.6]

String and Tuples are immutable

Lists are mutable

Today’s Quiz
• 5 minutes - collaborate at will!

All variables store
references to objects

All variables store
references to objects

number = 2

All variables store
references to objects

What's actually happening:
number = 2

All variables store
references to objects

What's actually happening:
int

2
number = 2

All variables store
references to objects

What's actually happening: number
int

2
number = 2

All variables store
references to objects

What's actually happening: number
int

2
number = 2

All variables store
references to objects

What's actually happening: number
int

2
number = 4

number = 2

All variables store
references to objects

What's actually happening: number
int

2

int

4

number = 4

number = 2

All variables store
references to objects

What's actually happening: number
int

2

int

4

number = 4

number = 2

All variables store
references to objects

What's actually happening: number
int

2

int

4

number = 4

number = 2

For immutable objects, we don't have to think about this much.

All variables store
references to objects

What's actually happening: number
int

2

int

4

number = 4

number = 2

For immutable objects, we don't have to think about this much.

Aside: What happens to the 2 object?

All variables store
references to objects

What's actually happening: number
int

2

int

4

number = 4

number = 2

For immutable objects, we don't have to think about this much.

Aside: What happens to the 2 object?
• If no variables refer to it, Python deletes it automatically.

All variables store
references to objects

What's actually happening: number
int

2

int

4

number = 4

number = 2

For immutable objects, we don't have to think about this much.

Aside: What happens to the 2 object?
• If no variables refer to it, Python deletes it automatically.
• This is called garbage collection.

Objects and Variables:
Digging a little deeper

0 1 2 3 4
list

weather

Now let's talk about lists:

• each element is like its own variable

int

63 str

"light rain"

int

8
str

"SSW"

float

29.75

weather = [63, "light rain", 8, "SSW", 29.75]

Objects and Variables:
Digging a little deeper

0 1 2 3 4
list

weather

Now let's talk about lists:

• each element is like its own variable

int

63
int

8
str

"SSW"

float

29.75

weather = [63, "light rain", 8, "SSW", 29.75]
weather[1] = "cloudy"

str

"light rain"

Objects and Variables:
Digging a little deeper

0 1 2 3 4
list

weather

Now let's talk about lists:

• each element is like its own variable

int

63
int

8
str

"SSW"

float

29.75

weather = [63, "light rain", 8, "SSW", 29.75]
weather[1] = "cloudy"

str

"cloudy"

str

"light rain"

Objects and Variables:
Digging a little deeper

0 1 2 3 4
list

weather

Now let's talk about lists:

• each element is like its own variable

int

63
int

8
str

"SSW"

float

29.75

weather = [63, "light rain", 8, "SSW", 29.75]
weather[1] = "cloudy"

str

"cloudy"

str

"light rain"

Objects and Variables:
Digging a little deeper

0 1 2 3 4
list

weather

Now let's talk about lists:

• each element is like its own variable

int

63
int

8
str

"SSW"

float

29.75

weather = [63, "light rain", 8, "SSW", 29.75]
weather[1] = "cloudy"

str

"cloudy"

str

"light rain"

Implications of Mutability
weather = [63, "light rain"]
tomorrow_weather = weather
tomorrow_weather[0] = 68
print(weather[0])

ABCD: What does the above code print?

A. "light rain"
B. Error
C. 63
D. 68

Implications of Mutability
weather = [63, "light rain"]
tomorrow_weather = weather
tomorrow_weather[0] = 68
print(weather[0])

0 1
list

weather

int

63
str

"light rain"

After creating the initial list:

On the board: how does this picture change as the code is executed?

Implications of Mutability
weather = [63, "light rain"]
tomorrow_weather = weather
tomorrow_weather[0] = 68
print(weather[0])

Implications of Mutability
weather = [63, "light rain"]
tomorrow_weather = weather
tomorrow_weather[0] = 68
print(weather[0])

More than one variable can refer to the same object.

Implications of Mutability
weather = [63, "light rain"]
tomorrow_weather = weather
tomorrow_weather[0] = 68
print(weather[0])

More than one variable can refer to the same object.

Changes to an object via one variable are reflected
when accessing it via another variable!

Implications of Mutability
weather = [63, "light rain"]
tomorrow_weather = weather
tomorrow_weather[0] = 68
print(weather[0])

More than one variable can refer to the same object.

To create a true copy of a mutable object, you can't
simply assign a new variable to the object.

Changes to an object via one variable are reflected
when accessing it via another variable!

Don't make this mistake

you did not just create a copy of a

a = [1, 2, 3]
b = a

Don't make this mistake

you did not just create a copy of a

To create a true copy of a mutable object, you can't
simply assign a new variable to the object.

a = [1, 2, 3]
b = a

Mutable Objects and Functions
When you pass a list into a function, you're
actually passing a reference to the list:

def z1(a_list):
 a_list[0] = 0

a = [1, 1, 1]
z1(a)
print(a)

Mutable Objects and Functions

def z1(a_list):
 a_list[0] = 0

a = [1, 1, 1]
z1(a)
print(a)

When you pass a list into a function, you're
actually passing a reference to the list:

Mutable Objects and Functions

def z1(a_list):
 a_list[0] = 0

a = [1, 1, 1]
z1(a)
print(a)

a_list points to the same
list as the global variable a

When you pass a list into a function, you're
actually passing a reference to the list:

Mutable Objects and Functions

def z2(a_list):
 a_list = []

a = [1, 1, 1]
z2(a)
print(a)

When you pass a list into a function, you're
actually passing a reference to the list:

Mutable Objects and Functions

def z2(a_list):
 a_list = []

a = [1, 1, 1]
z2(a)
print(a)

The local variable a_list
is reassigned to point to a
new (different) list

When you pass a list into a function, you're
actually passing a reference to the list:

Mutable Objects and Functions

def z2(a_list):
 a_list = []

a = [1, 1, 1]
z2(a)
print(a)

The local variable a_list
is reassigned to point to a
new (different) list
 
The list referenced by a is
unchanged.

When you pass a list into a function, you're
actually passing a reference to the list:

Mutable Objects and Functions
When you pass a list into a function, you're
actually passing a reference to the list:

def z3(x):
 a_list = [x, x, x]
 return a_list
b = 2
a = z3(b)
print(a)

Mutable Objects and Functions
When you pass a list into a function, you're
actually passing a reference to the list:

def z3(x):
 a_list = [x, x, x]
 return a_list
b = 2
a = z3(b)
print(a)

The function creates a new
list, with the local variable
a_list referring to it. 

Mutable Objects and Functions
When you pass a list into a function, you're
actually passing a reference to the list:

def z3(x):
 a_list = [x, x, x]
 return a_list
b = 2
a = z3(b)
print(a)

The function creates a new
list, with the local variable
a_list referring to it. 

The reference to the list is
returned and assigned to a.

Exercise
Write a function that returns a true copy (i.e., a
different list object containing the same values).
def copy_list(in_list):
 """ Return a new list object containing
 the same elements as in_list.
 Precondition: in_list's contents are
 all immutable. """

Exercise
Write a function that returns a true copy (i.e., a
different list object containing the same values).
def copy_list(in_list):
 """ Return a new list object containing
 the same elements as in_list.
 Precondition: in_list's contents are
 all immutable. """

Hint: one possible approach uses a loop and the append method.

Dictionaries
• Lists, tuples, strings are all sequences

(their contents are ordered)

• Python also has some types that handle
non-sequential collections, including
dictionaries (type dict):

• A dictionary is an unordered collection of key-value
mappings

Dictionaries
Another way to think about lists:

A list is a mapping

from integer indices

to arbitrary values.

Dictionaries
Another way to think about lists:

A list is a mapping

from integer indices

to arbitrary values.

Example:

Dictionaries
Another way to think about lists:

A list is a mapping

from integer indices

to arbitrary values.

["B", "A", 7]

Example:

Dictionaries
Another way to think about lists:

A list is a mapping

from integer indices

to arbitrary values.

["B", "A", 7]

Example:

represents the following mapping:

Dictionaries
Another way to think about lists:

A list is a mapping

from integer indices

to arbitrary values.

["B", "A", 7]

Example:

represents the following mapping:

0: "B"

1: "A"

2: 7

Dictionaries
Another way to think about lists:

A list is a mapping

from integer indices

to arbitrary values.

["B", "A", 7]

Example:

represents the following mapping:

0: "B"

1: "A"

2: 7

the index 0 maps
to the value "B"

Dictionaries
Another way to think about lists:

A list is a mapping

from integer indices

to arbitrary values.

A dictionary is a mapping

from arbitrary immutable keys

to arbitrary values.

["B", "A", 7]

Example:

represents the following mapping:

0: "B"

1: "A"

2: 7

the index 0 maps
to the value "B"

Dictionaries
Another way to think about lists:

A list is a mapping

from integer indices

to arbitrary values.

A dictionary is a mapping

from arbitrary immutable keys

to arbitrary values.

["B", "A", 7]

Example:

represents the following mapping:

0: "B"

1: "A"

2: 7

the index 0 maps
to the value "B"

{"B": 6, "A": 7}

Dictionaries
Another way to think about lists:

A list is a mapping

from integer indices

to arbitrary values.

A dictionary is a mapping

from arbitrary immutable keys

to arbitrary values.

["B", "A", 7]

Example:

represents the following mapping:

0: "B"

1: "A"

2: 7

the index 0 maps
to the value "B"

{"B": 6, "A": 7}
represents the following mapping:

Dictionaries
Another way to think about lists:

A list is a mapping

from integer indices

to arbitrary values.

A dictionary is a mapping

from arbitrary immutable keys

to arbitrary values.

["B", "A", 7]

Example:

represents the following mapping:

0: "B"

1: "A"

2: 7

the index 0 maps
to the value "B"

{"B": 6, "A": 7}
represents the following mapping:

"B": 6

"A": 7

Dictionaries
Another way to think about lists:

A list is a mapping

from integer indices

to arbitrary values.

A dictionary is a mapping

from arbitrary immutable keys

to arbitrary values.

["B", "A", 7]

Example:

represents the following mapping:

0: "B"

1: "A"

2: 7

the index 0 maps
to the value "B"

{"B": 6, "A": 7}
represents the following mapping:

"B": 6

"A": 7

the key B maps to
the value 6

Dictionaries
Why do we want this?

english = {}
english["aardvark"] = """a nocturnal burrowing
mammal with long ears, a tubular snout, and a
long extensible tongue, feeding on ants and
termites. Aardvarks are native to Africa and have
no close relatives."""

Suppose I want to store...

Dictionaries
Why do we want this?

sections = {}
sections[20891] = ["W0183782", "W0243810", # ...
sections[20892] = ["W0184582", "W0182368", # ...
...

Suppose I want to store...

A list of W#s of all the students in each of the lab sections.

Dictionaries
Why do we want this?

employee = {"First": "Scott",
 "Last": "Wehrwein",
 "Type": "Faculty",
 "W#": 98765438,
 # ...}

Suppose I want to store...

A bunch of different information about a WWU employee:

Dictionaries
Why do we want this?

Suppose I want to store...

The number of students with each letter grade in my class:

grade_counts = {"A": 6, "B": 12, "C": 8, "D": 2}

Dictionaries: Let's play
• Creation

• Indexing

• Assignment

Dictionaries: Let's play
• Creation

• Indexing

• Assignment

• in
grades = {"A": 10, "B": 18, "C": 6, "D": 2}

