-
-,

JOFFREY

CERSEI
WALDER FREY
MERYN TRANT
TYWIN LANNISTER

THE RED WOMAN
BERIC DONDARRION
THOROS OF MYR
ILYN PAYNE

THE MOUNTAIN ‘
THE HOUND A%

CSCI 141

L ecture 20
Lists
Mutability
Variables are References

Announcements

Announcements

» A4 is in! (tonight, if you're using all 3 slip days)

Announcements

» A4 is in! (tonight, if you're using all 3 slip days)

» | have office hours 2-3 today.

Announcements

» A4 is in! (tonight, if you're using all 3 slip days)

» | have office hours 2-3 today.

» A5 out tomorrow or Wednesday, due Friday

5/31

(S STORTES: WHAT"S IT LIKE TO BE A
FEMALE PROFESSOR!

Who: Dr. Sharmin, Dr. Liu, Dr. Islam, AWC professional
guests from industry, alumni, friends, YOU!

What: Creating the space to open about experiences as
students in education with various career goals in

addition to equipping our friends to be allies for
underrepresented friends.

When: Thursday May 23rd from 3-5pm. Doors open
@2:45pm

Where: Wilson Library Reading Room #480 (yes the Harry
Potter Reading Room)

Contact: awc.wwu@gmail.com for more info or questions!
See you there!

g‘:

- CS STOR|Es

\..o

o
JOIN FRIENDS IN THE
COMPUTING FIELD TO:

\

For disability resources,
ccccc ct 360-650-3083

THURSDAY, MAY 23
3-5PM

WILSON LIBRARY
READING ROOM #480

Goals

Know how to create, index, slice, and check for membership in lists.

Understand the behavior of the +, *, in, not in, operators on
lists.

Know how to use the assignment operator on list elements and slices
Know how to use the list methods append, and extend

Know the definition of mutability, and which sequence types are
mutable (lists) and immutable (strings, tuples)

Understand that Python variables actually hold references to objects

- Understand the implications of mutability when multiple variables
reference the same mutable object.

Last time

Understand the behavior of the following operators on strings:
<, >, ==, l=,1in,and not in

Understand how Python orders strings using lexicographic ordering:

Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Last time

Understand the behavior of the following operators on strings:
<, >, ==, l=,1in,and not in

Understand how Python orders strings using lexicographic ordering:

Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Last time

Understand the behavior of the following operators on strings:
<, >, ==, l=,1in,and not in

Understand how Python orders strings using lexicographic ordering:

Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Last time

Understand the behavior of the following operators on strings:
<, >, ==, l=,1in,and not in

Understand how Python orders strings using lexicographic ordering:

Example: "Bellingham" > "Bellevue"

"Bellingham” ., | _ .,

"Bel levue "Bellingham" > "Bellevue"

Last time

Understand the behavior of the following operators on strings:
<, >, ==, l=,1in,and not in

Understand how Python orders strings using lexicographic ordering:

Example: "Bellingham" > "Bellevue"

"Bellingham” ., | _ .,

"Bel levue "Bellingham" > "Bellevue"

Reminder: character ordering is based on ord function:

Last time

Understand the behavior of the following operators on strings:
<, >, ==, l=,1in,and not in

Understand how Python orders strings using lexicographic ordering:

Example: "Bellingham" > "Bellevue"

"Bellingham” ., | _ .,

"Bel levue "Bellingham" > "Bellevue"

Reminder: character ordering is based on ord function:
ord("a") => 97, ord("b") => 98, ...

Last time

Understand the behavior of the following operators on strings:

<, >, ==, l=,1in,and not in

Understand how Python orders strings using lexicographic ordering:

Example: "Bellingham" > "Bellevue"

"Bellingham” ., | _ .,

"Bel levue "Bellingham" > "Bellevue"

Reminder: character ordering is based on ord function:
ord("a") => 97, ord("b") => 98, ...
ord("A") => 65, ord("B") => 66, ...

Last time

Understand the behavior of the following operators on strings:

<, >, ==, l=,1in,and not in

Understand how Python orders strings using lexicographic ordering:

Example: "Bellingham" > "Bellevue"

"Bellingham” ., | _ .,

"Bel levue "Bellingham" > "Bellevue"

Reminder: character ordering is based on ord function:
ord("a") => 97, ord("b") => 98, ...
ord("A") => 65, ord("B") => 66, ...

Last time

Understand the behavior of the following operators on strings:

<, >, ==, l=,1in,and not in

Understand how Python orders strings using lexicographic ordering:

Example: "Bellingham" > "Bellevue"

Bellingham™ . | e. SO
"Bel levue "Bellingham" > "Bellevue"

Reminder: character ordering is based on ord function:
ord("a") => 97, ord("b") => 98, ...
ord("A") => 65, ord("B") => 66, ...

All upper-case letters come before all lower-case letters.

Last time

« Know how to create, index, slice, and check
for membership in lists.

« Understand the behavior of the +, *, in,
not in, operators on lists.

more on this today

Today’s Quiz

e 3 minutes

Today’s Quiz

e 3 minutes

 Working with a neighbor: do your answers
agree? (2 minutes)

Lists: Yet Another Sequence Type

A list is an object that contains a sequence of values.
We've seen them before.

Values can be of any type(s)!

Lists: Yet Another Sequence Type

A list is an object that contains a sequence of values.
We've seen them before.

for value in [1, 16, 4]:
print (value)

Values can be of any type(s)!

Lists: Yet Another Sequence Type

A list is an object that contains a sequence of values.
We've seen them before.

for value in [1, 16, 4]:
print (value)

Syntax:

Values can be of any type(s)!

Lists: Yet Another Sequence Type

A list is an object that contains a sequence of values.
We've seen them before.

for value in [1, 16, 4]:
print (value)

Syntax:
lval0O, vall, val2, val3]

Values can be of any type(s)!

Lists: Yet Another Sequence Type

A list is an object that contains a sequence of values.
We've seen them before.

for value in [1, 16, 4]:
print (value)

Syntax:
lval0O, vall, val2, val3]

comma-separated list of values

Values can be of any type(s)!

Lists: Yet Another Sequence Type

A list is an object that contains a sequence of values.
We've seen them before.

for value in [1, 16, 4]:
print(value)

Syntax:
lval0O, vall, val2, val3]

< comma-separated list of values >

surrounded by square brackets

Values can be of any type(s)!

What can we do with Lists?

A lot of this should look familiar.

These things work analogously to strings:
e Indexing

e Slicing

e The len function

* |in and not in operators

e + and * operators

What can we do with Lists?

A lot of this should look familiar.

a list = ["Scott”, 34, 27.7]

These things work analogously to strings:
e Indexing

e Slicing

e The len function

* |in and not in operators

e + and * operators

Demo

A lot of this should look familiar.

These things work analogously to strings:
e Indexing

e Slicing

e The len function

* |in and not in operators

e + and * operators

Demo

A lot of this should look familiar.

a list = ["Scott”, 34, 27.7]

These things work analogously to strings:
e Indexing

e Slicing

e The len function

* |in and not in operators

e + and * operators

Demo

A lot of this should look familiar.

make 'em
iIndex ‘'em
iIndex ‘'em

slice 'em

Demo

A lot of this should look familiar.

a list = ["Scott", 34, 27.7] make 'em
a list[O0] index ‘'em
a list[-1] index 'em

a list[1l:] slice 'em

Demo

A lot of this should look familiar.

Demo

A lot of this should look familiar.
a list = ["Scott"”, 34, 27.7]
len(a list)
len(["abc"])
len([])
34 in a list
"34" not in a list
a list + ["Wehrwein", "WWU"]

['na"] * 16 + ["Batman"]

Demo

Lists can contain any type: lists, tuples, turtles, ...

Demo

Lists can contain any type: lists, tuples, turtles, ...

a list = ["Scott", [34, 27.7, (39, 70)]1]
a 1list[0]

a list[1]

a list[1][2]

a list[1][2][0]

What can go in lists?

e Like tuples, any value can go in a list.

e tuples, lists, Turtles, ... anything

Lists: Yet Another Sequence Type

False True

A]B.

Starks - ["Ned", "Arya", "Bran", "Sansa"]

Lists: Yet Another Sequence Type

False True

A]B.

Starks - ["Ned", "Arya", "Bran", "Sansa"]

"Ned" in starks

Lists: Yet Another Sequence Type

False True

A]B.

Starks - ["Ned", "Arya", "Bran", "Sansa"]

f'Ned" in starks

Lists: Yet Another Sequence Type

False True

A]B.

Starks - ["Ned", "Arya", "Bran", "Sansa"]

f'Ned" in starks

"Sansa" in starks[1:3]

Lists: Yet Another Sequence Type

False True

A]B.

Starks - ["Ned", "Arya", "Bran", llSansall]

J'Ned" in starks

x'Sansa" in starks[1:3]

Lists: Yet Another Sequence Type

False True

A]B.

Starks - ["Ned", "Arya", "Bran", llSansall]

J'Ned" in starks

x'Sansa" in starks[1:3]

len(starks[1:4]) == 3

Lists: Yet Another Sequence Type

False True

A]B.

Starks - ["Ned", "Arya", "Bran", llSansall]

J'Ned" in starks

x'Sansa" in starks[1:3]
/].en(starks[l:él]) == 3

Lists: Yet Another Sequence Type

False True

A]B.

Starks - ["Ned", "Arya", "Bran", "Sansa"]

J'Ned" in starks

x'Sansa" in starks[1:3]
/].en(starks[l:él]) == 3

"Arya’ in (starks + ["Jon"]1)[2:]

Lists: Yet Another Sequence Type

False True

A]B.

Starks - ["Ned", "Arya", "Bran", "Sansa"]

J'Ned" in starks

x'Sansa" in starks[1:3]
/].en(starks[l:él]) == 3
x'Arya" in (starks + ["Jon"])[2:]

Lists: Yet Another Sequence Type

False True

A]B.

Starks - ["Ned", "Arya", "Bran", "Sansa"]

J'Ned” in starks
x'Sansa" in starks[1:3]
/].en(starks[l:él]) == 3

x'Arya" in (starks + ["Jon"])[2:]
len(starks[1:2] * 4) == 8

Lists: Yet Another Sequence Type

False True

A]B.

Starks - ["Ned", "Arya", "Bran", "Sansa"]

J'Ned” in starks

x'Sansa" in starks[1:3]
ﬁen(starks[l:él]) == 3
x'Arya" in (starks + ["Jon"])[2:]

xlen(starks[1:2] * 4) == §

Lists vs Strings: What's the
difference?

1. Strings hold only characters, while lists
can hold values of any type(s).

Lists vs Strings: What's the
difference?

1. Strings hold only characters, while lists
can hold values of any type(s).

...haven't we seen this before?

Lists vs Strings: What's the
difference?

1. Strings hold only characters, while lists
can hold values of any type(s).

...haven't we seen this before?

Tuples are also objects that hold a sequence of
values of any type(s).

Lists vs Strings: What's the
difference?

1. Strings hold only characters, while lists
can hold values of any type(s).

...haven't we seen this before?

Tuples are also objects that hold a sequence of
values of any type(s).

("alpaca", 14, 27.6)

Lists vs Tuples: What's the
difference?

Tuples are also objects that hold a sequence of
values of any type(s).

Lists vs Tuples: What's the
difference?

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists vs Tuples: What's the
difference?

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.

Lists vs Tuples: What's the
difference?

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.
Lists are mutable: their contents can be changed.

a tuple = ("a", 14, 27.6)

Lists vs Tuples: What's the
difference?

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.
Lists are mutable: their contents can be changed.

a tuple = ("a", 14, 27.6)
a list = ["a", 14, 27.6]

Lists vs Tuples: What's the
difference?

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.
Lists are mutable: their contents can be changed.

a tuple = ("a", 14, 27.6)

a list = ["a", 14, 27.6]

a tuple[l] # => 14

Lists vs Tuples: What's the
difference?

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.
Lists are mutable: their contents can be changed.

a tuple = ("a", 14, 27.6)

a list = ["a", 14, 27.6]

a tuple[l] # => 14
a list[1] # => 14

Lists vs Tuples: What's the
difference?

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.
Lists are mutable: their contents can be changed.

a tuple = ("a", 14, 27.6)

a list = ["a", 14, 27.6]

a tuple[l] # => 14
a list[1] # => 14

a tuple[l] = 0 # causes an error

Lists vs Tuples: What's the
difference?

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.
Lists are mutable: their contents can be changed.

a tuple = ("a", 14, 27.6)

a list = ["a", 14, 27.6]

a tuple[l] # => 14
a list[1] # => 14

a tuple[l] = 0 # causes an error
a list[1l] = 0 # a 1list is now ["a", 0, 27.6]

Lists vs Tuples: What's the
difference?

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.
Lists are mutable: their contents can be changed.

a tuple = ("a", 14, 27.6)

a list = ["a", 14, 27.6]

a tuple[l] # => 14
a list[1] # => 14

a tuple[l] = 0 # causes an error
a list[1l] = 0 # a 1list is now ["a", 0, 27.6]

Lists vs Tuples: What's the
difference?

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.
Lists are mutable: their contents can be changed.

a tuple = ("a", 14, 27.6)
a list = ["a", 14, 27.6]

a tuple[l] # => 14
a list[1] # => 14

a tuple[l] = 0 # causes an error
a list[1l] = 0 # a 1list is now ["a", 0, 27.6]

Lists vs Tuples: What's the
difference?

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.
Lists are mutable: their contents can be changed.

a tuple = ("a", 14, 27.6)
a list = ["a", 14, 27.6]

a tuple[l] # => 14
a list[1] # => 14

a tuple[l] = 0 # causes an error
a list[1l] = 0 # a 1list is now ["a", 0, 27.6]

Lists are mutable

a list = ["a", 14, 27.6]

a list | +—["a", 14, 27.6]

Lists are mutable

a list = ["a", 14, 27.6]

a 1list[0] = "b"

a list | +—["b", 14, 27.6]

Lists are mutable

a list = ["a", 14, 27.6]

a 1list[0] = "b"

a list.append(19)

a list | +—["b", 14, 27.6, 19]

Lists are mutable

a list = ["a", 14, 27.6]
a 1list[0] = "b"
a list.append(19)

a list.append(["12", 2])

a list | +—["b", 14, 27.6, 19, ["12", 2]]

Lists are mutable

a list = ["a", 14, 27.6]
a 1list[0] = "b"

a list.append(19)

a list.append(["12", 2])

a list.extend([22, 33])

a list | J—["b", 14, 27.6, 19, ["12", 21, 22, 23]

Lists are mutable

Notice the difference between string methods and list methods:

a list.append(19) a_list | —["'b"]

new string = a string.lower()

a string| — "JON"

Lists are mutable

Notice the difference between string methods and list methods:

a list.append(19) a_list | ——["b", 19]

e modifies the list in-place
e has no return value

new string = a string.lower()

a string| — "JON"

Lists are mutable

Notice the difference between string methods and list methods:

a list.append(19) a_list | —["'b", 19]

e modifies the list in-place
e has no return value

new string = a string.lower()

* does not modify a_string a string| — "JON"
* returns a lower-case copy

new string| | "jon’

Demo: a bale of turtles

Objects and Variables:
Digging a little deeper

When we talked about variables...

All variables store references to objects.
Objects can be any type
(that's why a variable can have any type):

Objects and Variables:
Digging a little deeper

When we talked about variables...

| lied and told you:

All variables store references to objects.
Objects can be any type
(that's why a variable can have any type):

Objects and Variables:
Digging a little deeper

When we talked about variables...

| lied and told you:

number | 2

All variables store references to objects.
Objects can be any type
(that's why a variable can have any type):

Objects and Variables:
Digging a little deeper

When we talked about variables...

| lied and told you:

All variables store references to objects.
Objects can be any type
(that's why a variable can have any type):

Objects and Variables:
Digging a little deeper

When we talked about variables...

| lied and told you:

what's actually happening:

All variables store references to objects.
Objects can be any type
(that's why a variable can have any type):

Objects and Variables:
Digging a little deeper

When we talked about variables...

| lied and told you:

what's actually happening: number

All variables store references to objects.
Objects can be any type
(that's why a variable can have any type):

Objects and Variables:
Digging a little deeper

When we talked about variables...

| lied and told you:

what's actually happening: number N

All variables store references to objects. int
Objects can be any type 2

(that's why a variable can have any type):

Objects and Variables:
Digging a little deeper

When we talked about variables...

| lied and told you:

number

2

what's actually happening:

All variables store references to objects.
Objects can be any type
(that's why a variable can have any type):

number

int

Objects and Variables:
Digging a little deeper

When we talked about variables...

| lied and told you:

number | 2 | Wwhat's actually happening: number |—~

[¥

All variables store references to objects. int int
Objects can be any type 4 2

(that's why a variable can have any type):

Objects and Variables:
Digging a little deeper

When we talked about variables...

| lied and told you:

number | 2 | Wwhat's actually happening: number |—~

[¥

All variables store references to objects. int int
Objects can be any type 4 2

(that's why a variable can have any type):

After number = 4 Is executed,
number points at a different object.

Objects and Variables:
Digging a little deeper

When we talked about variables...

| lied and told you:

number

2

what's actually happening:

All variables store references to objects.
Objects can be any type
(that's why a variable can have any type):

After number = 4 Is executed,
number points at a different object.

number —\
/ int
int
4 2

For immutable objects, we don't have to think about this much.

Objects and Variables:
Digging a little deeper

On paper exercise (not collected)
Execute the following, drawing and updating the
memory diagram for each variable and object involved.

number = 2

number = 4 _
number = 4

another number = number

another number += 1 number | ~

int

Objects and Variables:
Digging a little deeper

On paper exercise (not collected)
Execute the following, drawing and updating the
memory diagram for each variable and object involved.

number = 2
number = 4 _
number = 4

another number = number

another number += 1 numb?ﬁxf“\k
: int
int
4 2

Objects and Variables:
Digging a little deeper

Now let's talk about lists:
e ecach element is like its own variable

weather = [63, "light rain", 8, "Ssw", 29.75]

list
weather . 0 1 2 3 4
/ SN \
int str float
. 8 29.75
63 en SSW

"light rain"

Objects and Variables:
Digging a little deeper

Now let's talk about lists:
e ecach element is like its own variable

weather = [63, "light rain", 8, "ssw"', 29.75]
weather[1] = "cloudy"

list
weather > 0 1 2 3 4

int

63

str

"light rain"

str

float

/ // (\ \\ \\

" SSW "

29.75

Objects and Variables:
Digging a little deeper

Now let's talk about lists:
e ecach element is like its own variable

weather = [63, "light rain", 8, "Ssw", 29.75]
weather[1] = "cloudy"

list
weather . 0 1 2 3 4

/ L // (\ \\ \\

int str float
int n OUd n
/5/1/ Y 8 29.75

63 e SSW

"light rain"

Objects and Variables:
Digging a little deeper

Now let's talk about lists:
e ecach element is like its own variable

weather = [63, "light rain", 8, "Ssw", 29.75]
weather[1] = "cloudy"

list
weather . 0 1 2 3 4

/ L)/ (\ \\ \\

int str float
int n OUd n
/5/1/ Y 8 29.75

63 e SSW

"light rain"

Objects and Variables:
Digging a little deeper

Now let's talk about lists:
e each element is like its own variable

weather = [63, "light rain", 8, "Ssw", 29.75]
weather[1] = "cloudy"

list
weather . 0 1 2 3 4

/ /L

int

63

"cloudy"”

NN

str

float

" SSW "

29.75

Implications of Mutabillity

weather = [63, "light rain"]
tomorrow weather = weather
tomorrow weather[0] = 68
print (weather|[0])

ABCD: What does the above code print?

E A. "light rain’
B. Error
C
D [

<§: . 63

. 68

Implications of Mutabillity

weather = [63, "light rain"]
tomorrow weather = weather
tomorrow weather[0] = 68
print (weather|[0])

list
weather . 0 1

int str

63 "light rain"

Implications of Mutabillity

weather = [63, "light rain"]
tomorrow weather = weather
tomorrow weather[0] = 68
print (weather|[0])

Implications of Mutabillity

weather = [63, "light rain"]
tomorrow weather = weather
tomorrow weather[0] = 68
print (weather|[0])

More than one variable can refer to the same object.

Changing that object via one variable affects the other,
because it's the same object!

Implications of Mutabillity

weather = [63, "light rain"]
tomorrow weather = weather
tomorrow weather[0] = 68
print (weather|[0])

More than one variable can refer to the same object.
Changing that object via one variable affects the other,
because it's the same object!

To create a true copy of a mutable object, you can't
simply assign a new variable to the object.

Exercise

Write a function that returns a true copy (i.e.,
a different object that has the same values).

def copy list(in list):
""" Return a new list object containing
the same elements as in list. """

Exercise

Write a function that returns a true copy (i.e.,
a different object that has the same values).

def copy list(in list):
""" Return a new list object containing
the same elements as 1in list. """

Hint: one possible approach uses a loop and the append method.

