
CSCI 141
Lecture 20

Lists

Mutability

Variables are References

Announcements

Announcements
• A4 is in! (tonight, if you're using all 3 slip days)

Announcements
• A4 is in! (tonight, if you're using all 3 slip days)

• I have office hours 2-3 today.

Announcements
• A4 is in! (tonight, if you're using all 3 slip days)

• I have office hours 2-3 today.

• A5 out tomorrow or Wednesday, due Friday
5/31

CS Stories: What’s it like to be a
female professor?

Who: Dr. Sharmin, Dr. Liu, Dr. Islam, AWC professional
guests from industry, alumni, friends, YOU!

What: Creating the space to open about experiences as
students in education with various career goals in
addition to equipping our friends to be allies for
underrepresented friends.

When: Thursday May 23rd from 3-5pm. Doors open
@2:45pm

Where: Wilson Library Reading Room #480 (yes the Harry
Potter Reading Room)

Contact: awc.wwu@gmail.com for more info or questions!
See you there!

Goals
• Know how to create, index, slice, and check for membership in lists.

• Understand the behavior of the +, *, in, not in, operators on
lists.

• Know how to use the assignment operator on list elements and slices

• Know how to use the list methods append, and extend

• Know the definition of mutability, and which sequence types are
mutable (lists) and immutable (strings, tuples)

• Understand that Python variables actually hold references to objects

• Understand the implications of mutability when multiple variables
reference the same mutable object.

Last time
Understand the behavior of the following operators on strings:

• <, >, ==, !=, in, and not in

• Understand how Python orders strings using lexicographic ordering:

Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Last time
Understand the behavior of the following operators on strings:

• <, >, ==, !=, in, and not in

• Understand how Python orders strings using lexicographic ordering:

Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Last time
Understand the behavior of the following operators on strings:

• <, >, ==, !=, in, and not in

• Understand how Python orders strings using lexicographic ordering:

Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Last time
Understand the behavior of the following operators on strings:

• <, >, ==, !=, in, and not in

• Understand how Python orders strings using lexicographic ordering:

Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

i > e, so 
 "Bellingham" > "Bellevue"

Last time
Understand the behavior of the following operators on strings:

• <, >, ==, !=, in, and not in

• Understand how Python orders strings using lexicographic ordering:

Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

i > e, so 
 "Bellingham" > "Bellevue"

Reminder: character ordering is based on ord function:

Last time
Understand the behavior of the following operators on strings:

• <, >, ==, !=, in, and not in

• Understand how Python orders strings using lexicographic ordering:

Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

i > e, so 
 "Bellingham" > "Bellevue"

Reminder: character ordering is based on ord function:
ord("a") => 97, ord("b") => 98, ...

Last time
Understand the behavior of the following operators on strings:

• <, >, ==, !=, in, and not in

• Understand how Python orders strings using lexicographic ordering:

Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

i > e, so 
 "Bellingham" > "Bellevue"

Reminder: character ordering is based on ord function:
ord("a") => 97, ord("b") => 98, ...
ord("A") => 65, ord("B") => 66, ...

Last time
Understand the behavior of the following operators on strings:

• <, >, ==, !=, in, and not in

• Understand how Python orders strings using lexicographic ordering:

Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

i > e, so 
 "Bellingham" > "Bellevue"

Reminder: character ordering is based on ord function:
ord("a") => 97, ord("b") => 98, ...
ord("A") => 65, ord("B") => 66, ...

Last time
Understand the behavior of the following operators on strings:

• <, >, ==, !=, in, and not in

• Understand how Python orders strings using lexicographic ordering:

Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

i > e, so 
 "Bellingham" > "Bellevue"

Reminder: character ordering is based on ord function:
ord("a") => 97, ord("b") => 98, ...
ord("A") => 65, ord("B") => 66, ...

All upper-case letters come before all lower-case letters.

Last time
• Know how to create, index, slice, and check

for membership in lists.

• Understand the behavior of the +, *, in,
not in, operators on lists.

more on this today

Today’s Quiz
• 3 minutes

Today’s Quiz
• 3 minutes

• Working with a neighbor: do your answers
agree? (2 minutes)

Lists: Yet Another Sequence Type

We've seen them before.

Values can be of any type(s)!

A list is an object that contains a sequence of values.

Lists: Yet Another Sequence Type

We've seen them before.

for value in [1, 16, 4]:
 print(value)

Values can be of any type(s)!

A list is an object that contains a sequence of values.

Lists: Yet Another Sequence Type

We've seen them before.

for value in [1, 16, 4]:
 print(value)

Syntax:

Values can be of any type(s)!

A list is an object that contains a sequence of values.

Lists: Yet Another Sequence Type

We've seen them before.

for value in [1, 16, 4]:
 print(value)

[val0, val1, val2, val3]

Syntax:

Values can be of any type(s)!

A list is an object that contains a sequence of values.

Lists: Yet Another Sequence Type

We've seen them before.

for value in [1, 16, 4]:
 print(value)

[val0, val1, val2, val3]

comma-separated list of values

Syntax:

Values can be of any type(s)!

A list is an object that contains a sequence of values.

Lists: Yet Another Sequence Type

We've seen them before.

for value in [1, 16, 4]:
 print(value)

[val0, val1, val2, val3]

comma-separated list of values

surrounded by square brackets

Syntax:

Values can be of any type(s)!

A list is an object that contains a sequence of values.

What can we do with Lists?
A lot of this should look familiar.

These things work analogously to strings:
• Indexing

• Slicing

• The len function

• in and not in operators

• + and * operators

What can we do with Lists?
A lot of this should look familiar.

a_list = ["Scott", 34, 27.7]

These things work analogously to strings:
• Indexing

• Slicing

• The len function

• in and not in operators

• + and * operators

Demo
A lot of this should look familiar.

These things work analogously to strings:
• Indexing

• Slicing

• The len function

• in and not in operators

• + and * operators

Demo
A lot of this should look familiar.

a_list = ["Scott", 34, 27.7]

These things work analogously to strings:
• Indexing

• Slicing

• The len function

• in and not in operators

• + and * operators

Demo
A lot of this should look familiar.

make 'em

index 'em

index 'em

slice 'em

Demo
A lot of this should look familiar.

a_list = ["Scott", 34, 27.7]

a_list[0]

a_list[-1]

a_list[1:]

make 'em

index 'em

index 'em

slice 'em

Demo
A lot of this should look familiar.

Demo
A lot of this should look familiar.

a_list = ["Scott", 34, 27.7]

len(a_list)

len(["abc"])

len([])

34 in a_list

"34" not in a_list

a_list + ["Wehrwein", "WWU"]

["na"] * 16 + ["Batman"]

Demo
Lists can contain any type: lists, tuples, turtles, ...

Demo
Lists can contain any type: lists, tuples, turtles, ...

a_list = ["Scott", [34, 27.7, (39, 70)]]

a_list[0]

a_list[1]

a_list[1][2]

a_list[1][2][0]

What can go in lists?
• Like tuples, any value can go in a list.

• tuples, lists, Turtles, ... anything

Lists: Yet Another Sequence Type

starks = ["Ned", "Arya", "Bran", "Sansa"]

False True

Lists: Yet Another Sequence Type

starks = ["Ned", "Arya", "Bran", "Sansa"]

"Ned" in starks

False True

Lists: Yet Another Sequence Type

starks = ["Ned", "Arya", "Bran", "Sansa"]

"Ned" in starks

False True

Lists: Yet Another Sequence Type

starks = ["Ned", "Arya", "Bran", "Sansa"]

"Ned" in starks

"Sansa" in starks[1:3]

False True

Lists: Yet Another Sequence Type

starks = ["Ned", "Arya", "Bran", "Sansa"]

"Ned" in starks

"Sansa" in starks[1:3]

False True

Lists: Yet Another Sequence Type

starks = ["Ned", "Arya", "Bran", "Sansa"]

"Ned" in starks

"Sansa" in starks[1:3]

len(starks[1:4]) == 3

False True

Lists: Yet Another Sequence Type

starks = ["Ned", "Arya", "Bran", "Sansa"]

"Ned" in starks

"Sansa" in starks[1:3]

len(starks[1:4]) == 3

False True

Lists: Yet Another Sequence Type

starks = ["Ned", "Arya", "Bran", "Sansa"]

"Ned" in starks

"Sansa" in starks[1:3]

len(starks[1:4]) == 3

"Arya" in (starks + ["Jon"])[2:]

False True

Lists: Yet Another Sequence Type

starks = ["Ned", "Arya", "Bran", "Sansa"]

"Ned" in starks

"Sansa" in starks[1:3]

len(starks[1:4]) == 3

"Arya" in (starks + ["Jon"])[2:]

False True

Lists: Yet Another Sequence Type

starks = ["Ned", "Arya", "Bran", "Sansa"]

"Ned" in starks

"Sansa" in starks[1:3]

len(starks[1:4]) == 3

"Arya" in (starks + ["Jon"])[2:]

len(starks[1:2] * 4) == 8

False True

Lists: Yet Another Sequence Type

starks = ["Ned", "Arya", "Bran", "Sansa"]

"Ned" in starks

"Sansa" in starks[1:3]

len(starks[1:4]) == 3

"Arya" in (starks + ["Jon"])[2:]

len(starks[1:2] * 4) == 8

False True

Lists vs Strings: What's the
difference?

1. Strings hold only characters, while lists
can hold values of any type(s).

Lists vs Strings: What's the
difference?

1. Strings hold only characters, while lists
can hold values of any type(s).

...haven't we seen this before?

Lists vs Strings: What's the
difference?

1. Strings hold only characters, while lists
can hold values of any type(s).

...haven't we seen this before?

Tuples are also objects that hold a sequence of
values of any type(s).

Lists vs Strings: What's the
difference?

1. Strings hold only characters, while lists
can hold values of any type(s).

...haven't we seen this before?

("alpaca", 14, 27.6)

Tuples are also objects that hold a sequence of
values of any type(s).

Lists vs Tuples: What's the
difference?

Tuples are also objects that hold a sequence of
values of any type(s).

Lists vs Tuples: What's the
difference?

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists vs Tuples: What's the
difference?

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.

Lists vs Tuples: What's the
difference?

a_tuple = ("a", 14, 27.6)

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.

Lists vs Tuples: What's the
difference?

a_tuple = ("a", 14, 27.6)
a_list = ["a", 14, 27.6]

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.

Lists vs Tuples: What's the
difference?

a_tuple = ("a", 14, 27.6)
a_list = ["a", 14, 27.6]
 
a_tuple[1] # => 14

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.

Lists vs Tuples: What's the
difference?

a_tuple = ("a", 14, 27.6)
a_list = ["a", 14, 27.6]
 
a_tuple[1] # => 14
a_list[1] # => 14  

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.

Lists vs Tuples: What's the
difference?

a_tuple = ("a", 14, 27.6)
a_list = ["a", 14, 27.6]
 
a_tuple[1] # => 14
a_list[1] # => 14  

a_tuple[1] = 0 # causes an error

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.

Lists vs Tuples: What's the
difference?

a_tuple = ("a", 14, 27.6)
a_list = ["a", 14, 27.6]
 
a_tuple[1] # => 14
a_list[1] # => 14  

a_tuple[1] = 0 # causes an error
a_list[1] = 0 # a_list is now ["a", 0, 27.6]

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.

Lists vs Tuples: What's the
difference?

a_tuple = ("a", 14, 27.6)
a_list = ["a", 14, 27.6]
 
a_tuple[1] # => 14
a_list[1] # => 14  

a_tuple[1] = 0 # causes an error
a_list[1] = 0 # a_list is now ["a", 0, 27.6]

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.

Lists vs Tuples: What's the
difference?

a_tuple = ("a", 14, 27.6)
a_list = ["a", 14, 27.6]
 
a_tuple[1] # => 14
a_list[1] # => 14  

a_tuple[1] = 0 # causes an error
a_list[1] = 0 # a_list is now ["a", 0, 27.6]

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.

Lists vs Tuples: What's the
difference?

a_tuple = ("a", 14, 27.6)
a_list = ["a", 14, 27.6]
 
a_tuple[1] # => 14
a_list[1] # => 14  

a_tuple[1] = 0 # causes an error
a_list[1] = 0 # a_list is now ["a", 0, 27.6]

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.

Lists are mutable
a_list = ["a", 14, 27.6]

["a", 14, 27.6]a_list

Lists are mutable
a_list = ["a", 14, 27.6]

a_list[0] = "b"

["b", 14, 27.6]a_list

Lists are mutable
a_list = ["a", 14, 27.6]

a_list[0] = "b"

a_list.append(19)

["b", 14, 27.6, 19]a_list

Lists are mutable
a_list = ["a", 14, 27.6]

a_list[0] = "b"

a_list.append(19)

a_list.append(["12", 2])

["b", 14, 27.6, 19, ["12", 2]]a_list

Lists are mutable
a_list = ["a", 14, 27.6]

a_list[0] = "b"

a_list.append(19)

a_list.append(["12", 2])

["b", 14, 27.6, 19, ["12", 2], 22, 23]

a_list.extend([22, 33])

a_list

Lists are mutable
Notice the difference between string methods and list methods:

a_list.append(19)

new_string = a_string.lower()

["b"]a_list

"JON"a_string

Lists are mutable
Notice the difference between string methods and list methods:

a_list.append(19)

new_string = a_string.lower()

• modifies the list in-place

• has no return value

["b", 19]a_list

"JON"a_string

Lists are mutable
Notice the difference between string methods and list methods:

a_list.append(19)

new_string = a_string.lower()

• modifies the list in-place

• has no return value

• does not modify a_string

• returns a lower-case copy

["b", 19]a_list

new_string "jon"

"JON"a_string

Demo: a bale of turtles
• bale.py

Objects and Variables:
Digging a little deeper

When we talked about variables...

All variables store references to objects.

Objects can be any type

(that's why a variable can have any type):

Objects and Variables:
Digging a little deeper

When we talked about variables...
 I lied and told you:

All variables store references to objects.

Objects can be any type

(that's why a variable can have any type):

Objects and Variables:
Digging a little deeper

When we talked about variables...

number 2

 I lied and told you:

All variables store references to objects.

Objects can be any type

(that's why a variable can have any type):

Objects and Variables:
Digging a little deeper

When we talked about variables...
 I lied and told you:

All variables store references to objects.

Objects can be any type

(that's why a variable can have any type):

Objects and Variables:
Digging a little deeper

When we talked about variables...

what's actually happening:

 I lied and told you:

All variables store references to objects.

Objects can be any type

(that's why a variable can have any type):

Objects and Variables:
Digging a little deeper

When we talked about variables...

what's actually happening: number

 I lied and told you:

All variables store references to objects.

Objects can be any type

(that's why a variable can have any type):

Objects and Variables:
Digging a little deeper

When we talked about variables...

what's actually happening: number

int

2

 I lied and told you:

All variables store references to objects.

Objects can be any type

(that's why a variable can have any type):

Objects and Variables:
Digging a little deeper

When we talked about variables...

number 2 what's actually happening: number

int

2

 I lied and told you:

All variables store references to objects.

Objects can be any type

(that's why a variable can have any type):

Objects and Variables:
Digging a little deeper

When we talked about variables...

number 2 what's actually happening: number

int

2

 I lied and told you:

All variables store references to objects.

Objects can be any type

(that's why a variable can have any type):

int

4

Objects and Variables:
Digging a little deeper

When we talked about variables...

number 2 what's actually happening: number

int

2

 I lied and told you:

All variables store references to objects.

Objects can be any type

(that's why a variable can have any type):

int

4

number = 4After
number points at a different object.

is executed,

Objects and Variables:
Digging a little deeper

When we talked about variables...

number 2 what's actually happening: number

int

2

 I lied and told you:

All variables store references to objects.

Objects can be any type

(that's why a variable can have any type):

int

4

number = 4After
number points at a different object.

is executed,

For immutable objects, we don't have to think about this much.

Objects and Variables:
Digging a little deeper

number

int

2

On paper exercise (not collected)

Execute the following, drawing and updating the
memory diagram for each variable and object involved.

number = 2
number = 4
another_number = number
another_number += 1

number = 4

Objects and Variables:
Digging a little deeper

number

int

2
int

4

On paper exercise (not collected)

Execute the following, drawing and updating the
memory diagram for each variable and object involved.

number = 2
number = 4
another_number = number
another_number += 1

number = 4

Objects and Variables:
Digging a little deeper

0 1 2 3 4
list

weather

Now let's talk about lists:

• each element is like its own variable

int

63 str

"light rain"

int

8
str

"SSW"

float

29.75

weather = [63, "light rain", 8, "SSW", 29.75]

Objects and Variables:
Digging a little deeper

0 1 2 3 4
list

weather

Now let's talk about lists:

• each element is like its own variable

int

63
int

8
str

"SSW"

float

29.75

weather = [63, "light rain", 8, "SSW", 29.75]
weather[1] = "cloudy"

str

"light rain"

Objects and Variables:
Digging a little deeper

0 1 2 3 4
list

weather

Now let's talk about lists:

• each element is like its own variable

int

63
int

8
str

"SSW"

float

29.75

weather = [63, "light rain", 8, "SSW", 29.75]
weather[1] = "cloudy"

str

"cloudy"

str

"light rain"

Objects and Variables:
Digging a little deeper

0 1 2 3 4
list

weather

Now let's talk about lists:

• each element is like its own variable

int

63
int

8
str

"SSW"

float

29.75

weather = [63, "light rain", 8, "SSW", 29.75]
weather[1] = "cloudy"

str

"cloudy"

str

"light rain"

Objects and Variables:
Digging a little deeper

0 1 2 3 4
list

weather

Now let's talk about lists:

• each element is like its own variable

int

63
int

8
str

"SSW"

float

29.75

weather = [63, "light rain", 8, "SSW", 29.75]
weather[1] = "cloudy"

str

"cloudy"

str

"light rain"

Implications of Mutability
weather = [63, "light rain"]
tomorrow_weather = weather
tomorrow_weather[0] = 68
print(weather[0])

ABCD: What does the above code print?

A. "light rain"
B. Error
C. 63
D. 68

Implications of Mutability
weather = [63, "light rain"]
tomorrow_weather = weather
tomorrow_weather[0] = 68
print(weather[0])

0 1
list

weather

int

63
str

"light rain"

Implications of Mutability
weather = [63, "light rain"]
tomorrow_weather = weather
tomorrow_weather[0] = 68
print(weather[0])

Implications of Mutability
weather = [63, "light rain"]
tomorrow_weather = weather
tomorrow_weather[0] = 68
print(weather[0])

More than one variable can refer to the same object.

Changing that object via one variable affects the other,
because it's the same object!

Implications of Mutability
weather = [63, "light rain"]
tomorrow_weather = weather
tomorrow_weather[0] = 68
print(weather[0])

More than one variable can refer to the same object.

Changing that object via one variable affects the other,
because it's the same object!

To create a true copy of a mutable object, you can't
simply assign a new variable to the object.

Exercise
Write a function that returns a true copy (i.e.,
a different object that has the same values).

def copy_list(in_list):
 """ Return a new list object containing
 the same elements as in_list. """

Exercise
Write a function that returns a true copy (i.e.,
a different object that has the same values).

def copy_list(in_list):
 """ Return a new list object containing
 the same elements as in_list. """

Hint: one possible approach uses a loop and the append method.

