
CSCI 141
Lecture 19

String Comparisons and Ordering

Introduction to Lists

Announcements

Announcements
• A4 due tonight.

Announcements
• A4 due tonight.

• I have office hours 2-3:30 today.

Announcements
• A4 due tonight.

• I have office hours 2-3:30 today.

• Remember: you have a total of 3 slip days to
spend on assignments throughout the quarter.

Announcements
• A4 due tonight.

• I have office hours 2-3:30 today.

• Remember: you have a total of 3 slip days to
spend on assignments throughout the quarter.

• A5 out circa Wednesday 5/22, due Friday 5/31

Inclusive Learning
Environment: Redux

• Remember Lecture 1? 
 
 
 
 

Inclusive Learning
Environment: Redux

• Remember Lecture 1? 
 
 
 
 

Inclusive Learning
Environment: Redux

• Remember Lecture 1? 
 
 
 
 

• Anyone felt like this at any point in the
course?

Inclusive Learning
Environment: Redux

• Remember Lecture 1? 
 
 
 
 

• Anyone felt like this at any point in the
course? (I have...)

Inclusive Learning
Environment: Redux

• My goal: A learning environment in which everyone feels
comfortable, curious, and excited to learn.

• You learn by doing.

• This involves making mistakes and asking questions.

• Nobody writes perfect code on the first try, not even professionals.

• Keep this in mind when: 
 
 
 
 
 

Inclusive Learning
Environment: Redux

• My goal: A learning environment in which everyone feels
comfortable, curious, and excited to learn.

• You learn by doing.

• This involves making mistakes and asking questions.

• Nobody writes perfect code on the first try, not even professionals.

• Keep this in mind when: 
 
 
 
 
 

This is you.

Inclusive Learning
Environment: Redux

Inclusive Learning
Environment: Redux

• My goal: A learning environment in which everyone feels
comfortable, curious, and excited to learn.

• You learn by doing.

• This involves making mistakes and asking questions.

• Nobody writes perfect code on the first try, not even professionals.

• Also keep this in mind when: 
 
 
 
 
 

Inclusive Learning
Environment: Redux

This is you.

• My goal: A learning environment in which everyone feels
comfortable, curious, and excited to learn.

• You learn by doing.

• This involves making mistakes and asking questions.

• Nobody writes perfect code on the first try, not even professionals.

• Also keep this in mind when: 
 
 
 
 
 

From my Winter 2019 course evaluations:

Why are we talking about this?

From my Winter 2019 course evaluations:

"Genuinely appreciated the diversity talk
he gave at the beginning of the first class.
I was tempted to drop the class after
repeated offensive remarks in mentor
hours by students but I kept thinking
about his talk."

Why are we talking about this?

From my Winter 2019 course evaluations:

"Genuinely appreciated the diversity talk
he gave at the beginning of the first class.
I was tempted to drop the class after
repeated offensive remarks in mentor
hours by students but I kept thinking
about his talk."

Why are we talking about this?

From my Winter 2019 course evaluations:

"Genuinely appreciated the diversity talk
he gave at the beginning of the first class.
I was tempted to drop the class after
repeated offensive remarks in mentor
hours by students but I kept thinking
about his talk."

Why are we talking about this?

People from underrepresented
groups face extra obstacles.

People from underrepresented
groups face extra obstacles.

This claim is (heavily) backed by scientific research.

People from underrepresented
groups face extra obstacles.

This claim is (heavily) backed by scientific research.
Disclaimer: I am not a psychologist

People from underrepresented
groups face extra obstacles.

Stereotype threat:

stereotypes become self-fulfilling when the subjects
of the stereotype are conscious of them.

This claim is (heavily) backed by scientific research.
Disclaimer: I am not a psychologist

People from underrepresented
groups face extra obstacles.

Stereotype threat:

stereotypes become self-fulfilling when the subjects
of the stereotype are conscious of them.

Impostor syndrome:

Successes are attributed to luck

Failures are attributed to ability

This claim is (heavily) backed by scientific research.
Disclaimer: I am not a psychologist

People from underrepresented
groups face extra obstacles.

Stereotype threat:

stereotypes become self-fulfilling when the subjects
of the stereotype are conscious of them.

Impostor syndrome:

Successes are attributed to luck

Failures are attributed to ability

This claim is (heavily) backed by scientific research.

Implicit bias:

well-intentioned people exhibit biases that they're not
even aware they have.

Disclaimer: I am not a psychologist

What can you do:

What can you do:
straight cis middle class white male (etc.) edition

What can you do:
• Recognize that this is a problem.

straight cis middle class white male (etc.) edition

What can you do:
• Recognize that this is a problem.

• Listen to people in underrepresented groups

straight cis middle class white male (etc.) edition

What can you do:
• Recognize that this is a problem.

• Listen to people in underrepresented groups

• Understand their experiences.

straight cis middle class white male (etc.) edition

What can you do:
• Recognize that this is a problem.

• Listen to people in underrepresented groups

• Understand their experiences.

• If someone gives you feedback, listen. Resist the temptation to
get defensive. Thank them for the feedback, and think about it.

straight cis middle class white male (etc.) edition

What can you do:
• Recognize that this is a problem.

• Listen to people in underrepresented groups

• Understand their experiences.

• If someone gives you feedback, listen. Resist the temptation to
get defensive. Thank them for the feedback, and think about it.

• Speak up if you witness discrimination,
harassment, or any inappropriate comments or
behavior.

straight cis middle class white male (etc.) edition

What can you do: 
underrepresented group member edition

What can you do: 
underrepresented group member edition

(I'm horribly underqualified to give advice on this...)

What can you do: 
underrepresented group member edition

• Recognize that this is a problem.

(I'm horribly underqualified to give advice on this...)

What can you do: 
underrepresented group member edition

• Recognize that this is a problem.

• Seek mentorship

(I'm horribly underqualified to give advice on this...)

What can you do: 
underrepresented group member edition

• Recognize that this is a problem.

• Seek mentorship

• Find community

(I'm horribly underqualified to give advice on this...)

What can you do: 
underrepresented group member edition

• Recognize that this is a problem.

• Seek mentorship

• Find community

(I'm horribly underqualified to give advice on this...)

A good place to start:

• WWU Association for Women in Computing (AWC)  

(not just for women!)

CS Stories: What’s it like to be a
female professor?

Who: Dr. Sharmin, Dr. Liu, Dr. Islam, AWC professional
guests from industry, alumni, friends, YOU!

What: Creating the space to open about experiences as
students in education with various career goals in
addition to equipping our friends to be allies for
underrepresented friends.

When: Thursday May 23rd from 3-5pm. Doors open
@2:45pm

Where: Wilson Library Reading Room #480 (yes the Harry
Potter Reading Room)

Contact: awc.wwu@gmail.com for more info or questions!
See you there!

Happenings
Tuesday, 5/21 – Peer Lecture Series: Math in CS
– 5 pm in CF 165

Wednesday, 5/22 – Tech Talk: OSNEXUS
– 5 pm in CF 115

Thursday, 5/23 – AWC Presents: CS Stories
– 3 – 5 pm in WL 480

Saturday and Sunday, 5/25 & 5/26 – Spring Game Jam
– 10 am in CF 105

https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fpeer-lecture-series-math-cs&data=02%7C01%7Cwehrwes%40wwu.edu%7C534bc751e33f4029863108d6da4bb49a%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636936416211475979&sdata=jai%2BDB3psMLMUgfTW2E78J76whPYgDBAfrs%2BZtjPpec%3D&reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Ftech-talk-osnexus&data=02%7C01%7Cwehrwes%40wwu.edu%7C534bc751e33f4029863108d6da4bb49a%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636936416211475979&sdata=2aOhu%2B5L%2Bw%2BUVFYpUI5N0NL0JojelNuLLF3JLn43Gio%3D&reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fawc-presents-women-computer-science-panel&data=02%7C01%7Cwehrwes%40wwu.edu%7C534bc751e33f4029863108d6da4bb49a%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636936416211485970&sdata=4OQBzNZoG7DPIcVbMffMJxAoOWP58bsHn33iOVaqHtE%3D&reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fspring-game-jam-1&data=02%7C01%7Cwehrwes%40wwu.edu%7C534bc751e33f4029863108d6da4bb49a%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636936416211485970&sdata=GVDb8EL38QU2lXf0F93sVomGZ1%2BFTcWB9Mt1%2BYjoM%2Fw%3D&reserved=0

Goals
• Understand the behavior of the following operators

on strings:

• <, >, ==, !=, in, and not in

• Understand how Python orders strings using lexicographic
ordering

• Know how to create, index, slice, and check for
membership in lists.

• Understand the behavior of the +, *, in, not
in, operators on lists.

Last time...
Know how Python interprets negative indices
into strings.

Know how to use slicing to get substrings

ABCD: Which of the these does not evaluate to "king"?

A. s[-4:]
B. s[2:6]
C. s[1:][1:]
D. s[4:]

s = "Viking"

Slicing/Indexing: Out of range

Slicing/Indexing: Out of range

s = "four"

Slicing/Indexing: Out of range

s = "four"

s[0] # => "f"

Slicing/Indexing: Out of range

s = "four"

s[0] # => "f"

s[5] # IndexError: string index out of range

Slicing/Indexing: Out of range

s = "four"

s[0] # => "f"

s[5] # IndexError: string index out of range

s[-1] # => "r"

Slicing/Indexing: Out of range

s = "four"

s[0] # => "f"

s[5] # IndexError: string index out of range

s[-1] # => "r"

s[-5] # IndexError: string index out of range

Slicing/Indexing: Advanced
This will not be tested, but might be useful!

Slicing/Indexing: Advanced
s = "four"

This will not be tested, but might be useful!

Slicing/Indexing: Advanced
s = "four"

s[:2] # => "fo"

This will not be tested, but might be useful!

Slicing/Indexing: Advanced
s = "four"

s[:2] # => "fo"

s[:7] # => "four" (!?)

This will not be tested, but might be useful!

Slicing/Indexing: Advanced
s = "four"

s[:2] # => "fo"

s[:7] # => "four" (!?)

This will not be tested, but might be useful!

Slice ends beyond the length are OK!

Slicing/Indexing: Advanced
s = "four"

s[:2] # => "fo"

s[:7] # => "four" (!?)

s[1:4:2] # => "or"

This will not be tested, but might be useful!

Slice ends beyond the length are OK!

Slicing/Indexing: Advanced
s = "four"

s[:2] # => "fo"

s[:7] # => "four" (!?)

s[1:4:2] # => "or"

This will not be tested, but might be useful!

Slice ends beyond the length are OK!

Slices can take a step size!

Slicing/Indexing: Advanced
s = "four"

s[:2] # => "fo"

s[:7] # => "four" (!?)

s[1:4:2] # => "or"

s[3:0:-1] # => "ruo"

This will not be tested, but might be useful!

Slice ends beyond the length are OK!

Slices can take a step size!

Slicing/Indexing: Advanced
s = "four"

s[:2] # => "fo"

s[:7] # => "four" (!?)

s[1:4:2] # => "or"

s[3:0:-1] # => "ruo"

This will not be tested, but might be useful!

Slice ends beyond the length are OK!

Slices can take a step size!

Negative step size: from start down to but not including end.

Slicing/Indexing: Advanced
s = "four"

s[:2] # => "fo"

s[:7] # => "four" (!?)

s[1:4:2] # => "or"

s[3:0:-1] # => "ruo"

s[::-1] # => "ruof"

This will not be tested, but might be useful!

Slice ends beyond the length are OK!

Slices can take a step size!

Negative step size: from start down to but not including end.

Slicing/Indexing: Advanced
s = "four"

s[:2] # => "fo"

s[:7] # => "four" (!?)

s[1:4:2] # => "or"

s[3:0:-1] # => "ruo"

s[::-1] # => "ruof"

This will not be tested, but might be useful!

Slice ends beyond the length are OK!

Slices can take a step size!

Negative step size: from start down to but not including end.

(like range!)

Slicing/Indexing: Advanced
s = "four"

s[:2] # => "fo"

s[:7] # => "four" (!?)

s[1:4:2] # => "or"

s[3:0:-1] # => "ruo"

s[::-1] # => "ruof"

This will not be tested, but might be useful!

Slice ends beyond the length are OK!

Slices can take a step size!

Negative step size: from start down to but not including end.

This idiom concisely reverses a string.

(like range!)

Last time...
• Know how to use a few of the basic methods of string

objects:

• s.upper() - convert s to upper case

• s.lower() - convert s to lower case

• s.find(t) - return the (start) index of t in s  
 or -1 if it's not in s

• s.replace(p, q) - replace all instances of p with q
in s

• All these (except find) return a new string with the
given modifications.

String Methods
Problem: write an expression to determine if a
string user_input contains the word "yes", with
any capitalization and with any amount of spaces.

user_input

String Methods
Problem: write an expression to determine if a
string user_input contains the word "yes", with
any capitalization and with any amount of spaces.

user_input

=> " Y eS "

String Methods
Problem: write an expression to determine if a
string user_input contains the word "yes", with
any capitalization and with any amount of spaces.

user_input.replace(" ", "")

=> " Y eS "

String Methods
Problem: write an expression to determine if a
string user_input contains the word "yes", with
any capitalization and with any amount of spaces.

user_input.replace(" ", "")

=> " Y eS ".replace(" ", "")

String Methods
Problem: write an expression to determine if a
string user_input contains the word "yes", with
any capitalization and with any amount of spaces.

user_input.replace(" ", "")

=> " Y eS ".replace(" ", "")

=> "YeS"

String Methods
Problem: write an expression to determine if a
string user_input contains the word "yes", with
any capitalization and with any amount of spaces.

=> " Y eS ".replace(" ", "")

=> "YeS".lower()

user_input.replace(" ", "").lower()

String Methods
Problem: write an expression to determine if a
string user_input contains the word "yes", with
any capitalization and with any amount of spaces.

=> " Y eS ".replace(" ", "")

=> "YeS".lower()

user_input.replace(" ", "").lower()

=> "yes"

String Methods
Problem: write an expression to determine if a
string user_input contains the word "yes", with
any capitalization and with any amount of spaces.

=> " Y eS ".replace(" ", "")

=> "YeS".lower()

user_input.replace(" ", "").lower()

=> "yes"

dot (method call) operators are evaluated left-to-right!

String Methods
Problem: write an expression to determine if a
string user_input contains the word "yes", with
any capitalization and with any amount of spaces.

user_input.replace(" ", "").lower() == "yes"

=> " Y eS ".replace(" ", "")

=> "YeS".lower()

=> "yes" == "yes"

String Methods
Problem: write an expression to determine if a
string user_input contains the word "yes", with
any capitalization and with any amount of spaces.

user_input.replace(" ", "").lower() == "yes"

=> " Y eS ".replace(" ", "")

=> "YeS".lower()

=> "yes" == "yes"

=> True

Today’s Quiz
• 3 minutes

Today’s Quiz
• 3 minutes

For reference:

• s.upper() - convert s to upper case

• s.lower() - convert s to lower case

• s.find(t) - return the (start) index of t in s  
 or -1 if it's not in s

• s.replace(p, q) - replace all instances of p  
 with q in string s

Today’s Quiz
• 3 minutes

• Working with a neighbor: do your answers
agree? (2 minutes)

Operators on Strings
Familiar:

+ concatenation

* repetition

[] indexing, slicing

== equals

!= not equals

Operators on Strings
Familiar:

+ concatenation

* repetition

[] indexing, slicing

== equals

!= not equals

"a" + "b" => "ab"

Operators on Strings
Familiar:

+ concatenation

* repetition

[] indexing, slicing

== equals

!= not equals

"a" + "b" => "ab"

"ha" * 3 => "hahaha"

Operators on Strings
Familiar:

+ concatenation

* repetition

[] indexing, slicing

== equals

!= not equals

"a" + "b" => "ab"

"ha" * 3 => "hahaha"

"batman"[:3] => "bat"

Operators on Strings
Familiar:

+ concatenation

* repetition

[] indexing, slicing

== equals

!= not equals

"a" + "b" => "ab"

"ha" * 3 => "hahaha"

"batman"[:3] => "bat"

"antman" == "natman" => False

Operators on Strings
Familiar:

+ concatenation

* repetition

[] indexing, slicing

== equals

!= not equals

"a" + "b" => "ab"

"ha" * 3 => "hahaha"

"batman"[:3] => "bat"

"antman" != natman" => True

"antman" == "natman" => False

String operators

String operators
Unfamiliar, but intuitive:

String operators
Unfamiliar, but intuitive:

in  
 
 
 

String operators
Unfamiliar, but intuitive:

in  
 
 
 

"a" in "abc". # => True

String operators
Unfamiliar, but intuitive:

in  
 
 
 

"a" in "abc". # => True
"dab" in "abacadabra" # => True

String operators
Unfamiliar, but intuitive:

in  
 
 
 

"a" in "abc". # => True
"dab" in "abacadabra" # => True
"A" in "abate" # => False

String operators
Unfamiliar, but intuitive:

in  
 
 
 

"a" in "abc". # => True
"dab" in "abacadabra" # => True
"A" in "abate" # => False
"eye" in "team" # => False

String operators
Unfamiliar, but intuitive:

in  
 
 
 

not in: exactly what you think (opposite of in)

"a" in "abc". # => True
"dab" in "abacadabra" # => True
"A" in "abate" # => False
"eye" in "team" # => False

String operators

Inequality comparisons follow lexicographic ordering:

• Order based on the first character

• If tied, use the next character,

• and so on

much like in a dictionary

These are all True:

"a" < "b"
"ab" < "ac"
"a" < "aa"
"" < "a"

String operators
Familiar, but (possibly) unintuitive:

Inequality comparisons follow lexicographic ordering:

• Order based on the first character

• If tied, use the next character,

• and so on

much like in a dictionary

These are all True:

"a" < "b"
"ab" < "ac"
"a" < "aa"
"" < "a"

String operators
Familiar, but (possibly) unintuitive:

<, >

Inequality comparisons follow lexicographic ordering:

• Order based on the first character

• If tied, use the next character,

• and so on

much like in a dictionary

These are all True:

"a" < "b"
"ab" < "ac"
"a" < "aa"
"" < "a"

String operators
Familiar, but (possibly) unintuitive:

<, >

Inequality comparisons follow lexicographic ordering:

• Order based on the first character

• If tied, use the next character,

• and so on

much like in a dictionary

These are all True:

"a" < "b"
"ab" < "ac"
"a" < "aa"
"" < "a"

String operators
Familiar, but (possibly) unintuitive:

<, >

Inequality comparisons follow lexicographic ordering:

• Order based on the first character

• If tied, use the next character,

• and so on

much like in a dictionary

These are all True:

"a" < "b"
"ab" < "ac"
"a" < "aa"
"" < "a"

String operators
Familiar, but (a little) unintuitive:

<, >

Caveat: lexicographic ordering is case-sensitive, and ALL
upper-case characters come before ALL lower-case letters:

These are all True:

"A" < "a"
"Z" < "a"
"Jello" < "hello"

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Tie - next character

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Tie - next character

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Tie - next character

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Tie - next character

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

i > e, so "Bellingham" > "Bellevue"

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

i > e, so "Bellingham" > "Bellevue"

Aside:

"Bell" < "Bellingham" => True

When all letters are tied, the shorter word comes first.

Lexicographic Ordering:
Aside

"?" < "!" # => ???

Lexicographic Ordering:
Aside

"?" < "!" # =>

The ord function takes a character and returns its
numerical (ASCII) code, which determines its ordering.

???

Lexicographic Ordering:
Aside

"?" < "!" # =>

The ord function takes a character and returns its
numerical (ASCII) code, which determines its ordering.

The chr function takes a numerical (ASCII) code and
returns the corresponding character.

???

Lexicographic Ordering:
Aside

"?" < "!" # =>

The ord function takes a character and returns its
numerical (ASCII) code, which determines its ordering.

The chr function takes a numerical (ASCII) code and
returns the corresponding character.

ord("?") # => 63
ord("!") # => 33

???

Lexicographic Ordering:
Aside

"?" < "!" # =>

The ord function takes a character and returns its
numerical (ASCII) code, which determines its ordering.

The chr function takes a numerical (ASCII) code and
returns the corresponding character.

ord("?") # => 63
ord("!") # => 33 "?" < "!" # => False

???

Lexicographic Ordering

ABCD: Which of the these evaluates to True?

A. "bat" > "rat"

B. "tap" < "bear"

C. "Jam" < "bet"

D. "STEAM" > "STEP!"

Lists
We've seen them before.

Values can be of any type(s)!

A list is an object that contains a sequence of values.

Lists
We've seen them before.

for value in [1, 16, 4]:
 print(value)

Values can be of any type(s)!

A list is an object that contains a sequence of values.

Lists
We've seen them before.

for value in [1, 16, 4]:
 print(value)

Syntax:

Values can be of any type(s)!

A list is an object that contains a sequence of values.

Lists
We've seen them before.

for value in [1, 16, 4]:
 print(value)

[val0, val1, val2, val3]

Syntax:

Values can be of any type(s)!

A list is an object that contains a sequence of values.

Lists
We've seen them before.

for value in [1, 16, 4]:
 print(value)

[val0, val1, val2, val3]

comma-separated list of values

Syntax:

Values can be of any type(s)!

A list is an object that contains a sequence of values.

Lists
We've seen them before.

for value in [1, 16, 4]:
 print(value)

[val0, val1, val2, val3]

comma-separated list of values

surrounded by square brackets

Syntax:

Values can be of any type(s)!

A list is an object that contains a sequence of values.

What can we do with Lists?
A lot of this should look familiar.

These things work analogously to strings:
• Indexing

• Slicing

• The len function

• in and not in operators

• + and * operators

What can we do with Lists?
A lot of this should look familiar.

a_list = ["Scott", 34, 27.7]

These things work analogously to strings:
• Indexing

• Slicing

• The len function

• in and not in operators

• + and * operators

Demo
A lot of this should look familiar.

These things work analogously to strings:
• Indexing

• Slicing

• The len function

• in and not in operators

• + and * operators

Demo
A lot of this should look familiar.

a_list = ["Scott", 34, 27.7]

These things work analogously to strings:
• Indexing

• Slicing

• The len function

• in and not in operators

• + and * operators

Demo
A lot of this should look familiar.

make 'em

index 'em

index 'em

slice 'em

Demo
A lot of this should look familiar.

a_list = ["Scott", 34, 27.7]

a_list[0]

a_list[-1]

a_list[1:]

make 'em

index 'em

index 'em

slice 'em

Demo
A lot of this should look familiar.

Demo
A lot of this should look familiar.

a_list = ["Scott", 34, 27.7]

len(a_list)

len(["abc"])

len([])

34 in a_list

"34" not in a_list

a_list + ["Wehrwein", "WWU"]

["na"] * 16 + ["Batman"]

Lists vs Strings: What's the
difference?

1. Strings hold only characters, while lists
can hold values of any type(s).

Lists vs Strings: What's the
difference?

1. Strings hold only characters, while lists
can hold values of any type(s).

...haven't we seen this before?

Lists vs Strings: What's the
difference?

1. Strings hold only characters, while lists
can hold values of any type(s).

...haven't we seen this before?

Tuples are also objects that hold a sequence of
values of any type(s).

Lists vs Strings: What's the
difference?

1. Strings hold only characters, while lists
can hold values of any type(s).

...haven't we seen this before?

("alpaca", 14, 27.6)

Tuples are also objects that hold a sequence of
values of any type(s).

Lists vs Tuples: What's the
difference?

Tuples are also objects that hold a sequence of
values of any type(s).

Lists vs Tuples: What's the
difference?

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists vs Tuples: What's the
difference?

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.

Lists vs Tuples: What's the
difference?

a_tuple = ("a", 14, 27.6)

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.

Lists vs Tuples: What's the
difference?

a_tuple = ("a", 14, 27.6)
a_list = ["a", 14, 27.6]

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.

Lists vs Tuples: What's the
difference?

a_tuple = ("a", 14, 27.6)
a_list = ["a", 14, 27.6]
 
a_tuple[1] # => 14

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.

Lists vs Tuples: What's the
difference?

a_tuple = ("a", 14, 27.6)
a_list = ["a", 14, 27.6]
 
a_tuple[1] # => 14
a_list[1] # => 14  

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.

Lists vs Tuples: What's the
difference?

a_tuple = ("a", 14, 27.6)
a_list = ["a", 14, 27.6]
 
a_tuple[1] # => 14
a_list[1] # => 14  

a_tuple[1] = 0 # causes an error

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.

Lists vs Tuples: What's the
difference?

a_tuple = ("a", 14, 27.6)
a_list = ["a", 14, 27.6]
 
a_tuple[1] # => 14
a_list[1] # => 14  

a_tuple[1] = 0 # causes an error
a_list[1] = 0 # a_list is now ["a", 0, 27.6]

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.

Lists vs Tuples: What's the
difference?

a_tuple = ("a", 14, 27.6)
a_list = ["a", 14, 27.6]
 
a_tuple[1] # => 14
a_list[1] # => 14  

a_tuple[1] = 0 # causes an error
a_list[1] = 0 # a_list is now ["a", 0, 27.6]

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.

Lists vs Tuples: What's the
difference?

a_tuple = ("a", 14, 27.6)
a_list = ["a", 14, 27.6]
 
a_tuple[1] # => 14
a_list[1] # => 14  

a_tuple[1] = 0 # causes an error
a_list[1] = 0 # a_list is now ["a", 0, 27.6]

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.

A model of how lists are
stored

