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String Comparisons and Ordering

Introduction to Lists
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Announcements
• A4 due tonight.

• I have office hours 2-3:30 today.

• Remember: you have a total of 3 slip days to 
spend on assignments throughout the quarter.

• A5 out circa Wednesday 5/22, due Friday 5/31
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• Remember Lecture 1? 
 
 
 
 

• Anyone felt like this at any point in the 
course? (I have...)

Inclusive Learning 
Environment: Redux



• My goal: A learning environment in which everyone feels 
comfortable, curious, and excited to learn.

• You learn by doing.
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This is you.

• My goal: A learning environment in which everyone feels 
comfortable, curious, and excited to learn.

• You learn by doing.


• This involves making mistakes and asking questions.


• Nobody writes perfect code on the first try, not even professionals. 

• Also keep this in mind when: 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People from underrepresented 
groups face extra obstacles.

Stereotype threat:

stereotypes become self-fulfilling when the subjects 
of the stereotype are conscious of them.

Impostor syndrome:

Successes are attributed to luck

Failures are attributed to ability

This claim is (heavily) backed by scientific research.

Implicit bias: 

well-intentioned people exhibit biases that they're not 
even aware they have.

Disclaimer: I am not a psychologist
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What can you do:
• Recognize that this is a problem.

• Listen to people in underrepresented groups

• Understand their experiences.

• If someone gives you feedback, listen. Resist the temptation to 
get defensive. Thank them for the feedback, and think about it.

• Speak up if you witness discrimination, 
harassment, or any inappropriate comments or 
behavior.

straight cis middle class white male (etc.) edition
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What can you do: 
underrepresented group member edition

• Recognize that this is a problem.

• Seek mentorship

• Find community

(I'm horribly underqualified to give advice on this...)

A good place to start: 

• WWU Association for Women in Computing (AWC)  

(not just for women!)



CS Stories: What’s it like to be a 
female professor?

Who: Dr. Sharmin, Dr. Liu, Dr. Islam, AWC professional 
guests from industry, alumni, friends, YOU!

What: Creating the space to open about experiences as 
students in education with various career goals in 
addition to equipping our friends to be allies for 
underrepresented friends.

When: Thursday May 23rd from 3-5pm. Doors open 
@2:45pm

Where: Wilson Library Reading Room #480 (yes the Harry 
Potter Reading Room)

Contact: awc.wwu@gmail.com for more info or questions! 
See you there!



Happenings
Tuesday, 5/21 – Peer Lecture Series: Math in CS  
– 5 pm in CF 165 

Wednesday, 5/22 – Tech Talk: OSNEXUS  
– 5 pm in CF 115 

Thursday, 5/23 – AWC Presents: CS Stories  
– 3 – 5 pm in WL 480 

Saturday and Sunday, 5/25 & 5/26 – Spring Game Jam 
– 10 am in CF 105

https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fpeer-lecture-series-math-cs&data=02%7C01%7Cwehrwes%40wwu.edu%7C534bc751e33f4029863108d6da4bb49a%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636936416211475979&sdata=jai%2BDB3psMLMUgfTW2E78J76whPYgDBAfrs%2BZtjPpec%3D&reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Ftech-talk-osnexus&data=02%7C01%7Cwehrwes%40wwu.edu%7C534bc751e33f4029863108d6da4bb49a%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636936416211475979&sdata=2aOhu%2B5L%2Bw%2BUVFYpUI5N0NL0JojelNuLLF3JLn43Gio%3D&reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fawc-presents-women-computer-science-panel&data=02%7C01%7Cwehrwes%40wwu.edu%7C534bc751e33f4029863108d6da4bb49a%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636936416211485970&sdata=4OQBzNZoG7DPIcVbMffMJxAoOWP58bsHn33iOVaqHtE%3D&reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fspring-game-jam-1&data=02%7C01%7Cwehrwes%40wwu.edu%7C534bc751e33f4029863108d6da4bb49a%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636936416211485970&sdata=GVDb8EL38QU2lXf0F93sVomGZ1%2BFTcWB9Mt1%2BYjoM%2Fw%3D&reserved=0


Goals
• Understand the behavior of the following operators 

on strings:


• <, >, ==, !=, in, and not in


• Understand how Python orders strings using lexicographic 
ordering


• Know how to create, index, slice, and check for 
membership in lists.


• Understand the behavior of the +, *, in, not 
in, operators on lists.



Last time...
Know how Python interprets negative indices 
into strings.


Know how to use slicing to get substrings


ABCD: Which of the these does not evaluate to "king"?

A. s[-4:]
B. s[2:6]
C. s[1:][1:]
D. s[4:]

s = "Viking"
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s = "four"

s[0] # => "f"

s[5] # IndexError: string index out of range

s[-1] # => "r"

s[-5] # IndexError: string index out of range
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Slicing/Indexing: Advanced
s = "four"

s[:2] # => "fo"

s[:7] # => "four" (!?)

s[1:4:2] # => "or"

s[3:0:-1] # => "ruo"

s[::-1] # => "ruof"

This will not be tested, but might be useful!

Slice ends beyond the length are OK!

Slices can take a step size!

Negative step size: from start down to but not including end.

This idiom concisely reverses a string.

(like range!)



Last time...
• Know how to use a few of the basic methods of string 

objects:


• s.upper() - convert s to upper case

• s.lower() - convert s to lower case

• s.find(t) - return the (start) index of t in s  
            or -1 if it's not in s

• s.replace(p, q) - replace all instances of p with q 
in s 

• All these (except find) return a new string with the 
given modifications.
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string user_input contains the word "yes", with 
any capitalization and with any amount of spaces.
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String Methods
Problem: write an expression to determine if a 
string user_input contains the word "yes", with 
any capitalization and with any amount of spaces.

=> " Y  eS ".replace(" ", "")

=> "YeS".lower()

user_input.replace(" ", "").lower()

=> "yes"

dot (method call) operators are evaluated left-to-right!



String Methods
Problem: write an expression to determine if a 
string user_input contains the word "yes", with 
any capitalization and with any amount of spaces.
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String Methods
Problem: write an expression to determine if a 
string user_input contains the word "yes", with 
any capitalization and with any amount of spaces.

user_input.replace(" ", "").lower() == "yes"

=> " Y  eS ".replace(" ", "")

=> "YeS".lower()

=> "yes" == "yes"

=> True
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• 3 minutes

For reference:


• s.upper() - convert s to upper case

• s.lower() - convert s to lower case

• s.find(t) - return the (start) index of t in s  
            or -1 if it's not in s

• s.replace(p, q) - replace all instances of p     
                  with q in string s 



Today’s Quiz
• 3 minutes


• Working with a neighbor: do your answers 
agree? (2 minutes)
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Operators on Strings
Familiar: 

+    concatenation


*    repetition


[]   indexing, slicing


==   equals

!=   not equals

"a" + "b" => "ab"

"ha" * 3 => "hahaha"

"batman"[:3] => "bat"

"antman" != natman" => True

"antman" == "natman" => False
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String operators
Unfamiliar, but intuitive:

in  
 
 
 

not in: exactly what you think (opposite of in)

"a" in "abc".         # => True
"dab" in "abacadabra" # => True
"A" in "abate"        # => False
"eye" in "team"       # => False



String operators

Inequality comparisons follow lexicographic ordering:

• Order based on the first character

• If tied, use the next character,

• and so on

much like in a dictionary

These are all True:

"a" < "b"
"ab" < "ac"
"a" < "aa"
"" < "a"
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String operators
Familiar, but (possibly) unintuitive:

<, >

Inequality comparisons follow lexicographic ordering:

• Order based on the first character

• If tied, use the next character,

• and so on

much like in a dictionary

These are all True:

"a" < "b"
"ab" < "ac"
"a" < "aa"
"" < "a"



String operators
Familiar, but (a little) unintuitive: 

<, >

Caveat: lexicographic ordering is case-sensitive, and ALL 
upper-case characters come before ALL lower-case letters:

These are all True:

"A" < "a"
"Z" < "a"
"Jello" < "hello"
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Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

i > e, so "Bellingham" > "Bellevue"

Aside:

"Bell" < "Bellingham" => True

When all letters are tied, the shorter word comes first.  
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Lexicographic Ordering: 
Aside

"?" < "!" # => 

The ord function takes a character and returns its 
numerical (ASCII) code, which determines its ordering.

The chr function takes a numerical (ASCII) code and 
returns the corresponding character.

ord("?") # => 63
ord("!") # => 33 "?" < "!" # => False

???



Lexicographic Ordering

ABCD: Which of the these evaluates to True?

A. "bat" > "rat"

B. "tap" < "bear"

C. "Jam" < "bet"

D. "STEAM" > "STEP!"
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Lists
We've seen them before.


for value in [1, 16, 4]:
    print(value)

[val0, val1, val2, val3]

comma-separated list of values

surrounded by square brackets

Syntax:


Values can be of any type(s)!

A list is an object that contains a sequence of values.
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These things work analogously to strings: 
• Indexing

• Slicing

• The len function

• in and not in operators

• + and * operators
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a_list = ["Scott", 34, 27.7]

a_list[0]

a_list[-1]

a_list[1:]

make 'em

index 'em

index 'em

slice 'em
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Demo
A lot of this should look familiar.

a_list = ["Scott", 34, 27.7]

len(a_list)

len(["abc"])

len([])

34 in a_list

"34" not in a_list

a_list + ["Wehrwein", "WWU"]

["na"] * 16 + ["Batman"]
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Lists vs Strings: What's the 
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1. Strings hold only characters, while lists 
can hold values of any type(s).

...haven't we seen this before?

("alpaca", 14, 27.6)

Tuples are also objects that hold a sequence of 
values of any type(s).
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a_tuple = ("a", 14, 27.6)
a_list = ["a", 14, 27.6]
 
a_tuple[1] # => 14
a_list[1] # => 14  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A model of how lists are 
stored


