
CSCI 141
Lecture 18

Strings: Slicing, String Methods,  
Comparison and in operators

Announcements
• A4 is due Friday.

• Bonus points for reviewing exams will be
awarded and curved scores transferred to
Canvas later this week.

• I corrected grading on a couple questions

Goals
• Know how Python interprets negative indices into strings.

• Know how to use slicing to get substrings

• Know how to use a few of the basic methods of string objects:

• upper, lower, find, replace

• Understand the behavior of the following operators on strings:

• <, >, ==, !=, in, and not in

• Understand the meaning of lexicographic ordering

• Understand the meaning and implications of strings being
immutable objects.

Last time…
• Review what we know already about strings:

• the str type, + and * operators, len function

type("hello")  

print("Hello")  

"Hello" + “World"  

len("abc")  

"na" * 16 + " Batman!"

Last time…
• Know how to iterate over tuples and strings

using for loops
def remove_vowels(string):
 """ Print string, but with no vowels. Don't
 count y as a vowel.
 Pre: no upper case vowels.
 """
 result = ""
 for letter in string:
 # letter has the current letter in the string
 if not (letter == "a" or letter == "e" or letter == "i" \
 or letter == "o" or letter == "u"):
 result = result + letter
 return result

Last time…
• Know how to index into a string

outlook = “Summer is near”

outlook[0] # => "S"

0 1 2 3 4 5 6 7 8 9 10 11 12 13

S u m m e r i s n e a r

Index:
Value:

str

Indices in Python begin at 0.

outlook

outlook[4] # => "e"

Spaces are characters too!

outlook[6] # => " "

Indexing into Strings

ABCD: What is the index of the last character of a string s?

0 1 2 3 4 5 6 7 8 9 10 11 12 13

S u m m e r i s n e a r

Index:
Value:

A. len(s) - 1
B. len(s)
C. len(s) + 1
D. 42

A consequence of indexing -
Another way to loop through strings:

is equivalent to

for letter in a_string:
 print(letter, "-", sep="", end="")

for i in range(len(a_string)):
 print(a_string[i], "-", sep="", end="")

Nifty Python Feature:
Negative Indices

Negative indices count backwards from len(s):

0 1 2 3 4 5 6 7 8 9 10 11 12 13

S u m m e r i s n e a r

-14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

Index:

Index:

a_string[-5]

is equivalent to

a_string[len(a_string)-5]

-1 is always the last
character, and indices
count backwards from
there.

Two possible ways to remember how this works:

Negative Indices!

A. a = 1  
b = 5  

B. a = 1  
b = 7

last_name = "wehrwein"

print(last_name[a] == last_name[b])

C. a = -8  
b = -4  

D. a = -2  
b = 6

For which assignment of a and b
does the above not print True?

Today’s Quiz
• 3 minutes

Today’s Quiz
• 3 minutes

• Working with a neighbor: do your answers
agree? (2 minutes)

Worksheet - Exercise 1
def remove_comments(string):
 """ Return a copy of string, but with
 all characters starting with the first
 # symbol removed. If there is no # in
 the string, return input unchanged.
 """

Hint: use a while loop!

Example:

remove_comments("a = b # assign b to a”))
=> "a = b “

Slicing: indexing substrings
alph = "abcdefghij"
alph[0] # => "a"
alph[4] # => "e"

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

alph[0:5] # => “abcde"

alph[0:10] # => "abcdefghij"

alph[5:-2] # => "fgh"

string[start:end]

index of first character 1 + index of last character

just like the range function:
the end index is not included

Slicing syntax:

Slicing: indexing substrings
alph = "abcdefghij"

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

string[start:end]

index of first character 1 + index of last character

Slicing syntax:

If omitted, start

defaults to 0

If omitted, end

defaults to len(string)

alph[:4] # => “abcd"

alph[5:] # => "fghij"

String Slicing: Exercise

A. last_name[7:8]
B. last_name[6:-1]
C. last_name[-3:]
D. last_name[-2:8]

last_name = "Wehrwein"

Which of the above
evaluates to "in"?

0 1 2 3 4 5 6 7

W e h r w e i n

Ind
Val

str

Strings are objects.
We’ve seen other objects before: turtles!

Turtles had methods:

t = turtle.Turtle()
t.forward(100)

turtle module module function

(turtle constructor)

method of a
turtle object

variable that refers to
a turtle object

t
turtle

data and methods

Strings are objects.

Strings are objects too - they also have
methods.

Turtles had methods:

0 1 2 3 4 5 6 7

W e h r w e i n

Ind
Val

str

last_name = "Wehrwein"

a string literalvariable that refers to
a string object

last_name

last_name.upper()

method of a
string object

Strings have many methods

Method Parameters Description
upper none Returns a string in all uppercase

lower none Returns a string in all lowercase

strip none Returns a string with the leading and trailing whitespace
removed

count item Returns the number of occurrences of item

replace old, new Replaces all occurrences of old substring with new

find item Returns the leftmost index where the substring item is
found, or -1 if not found

here are a few of them:

String methods: demo
upper, lower, count, replace, find, strip

String methods: demo
upper, lower, count, replace, find, strip

word = "Banana"
word.upper()
word.lower()
word.count("a")
word.replace("a", "A")

line = " snails are out "
line.find("s")
line.find("snails")
line.find("banana")
line.strip()

phrase = "WWU is in Bellingham"
phrase = phrase[:19] + phrase[19].upper()

String Methods: More
The textbook (Section 9.5) has a more complete
listing of string methods:

http://interactivepython.org/runestone/static/thinkcspy/Strings/StringMethods.html

The Python documentation has full details of the
str type and all its methods:

https://docs.python.org/3/library/stdtypes.html#str

You should know how to use upper, lower,
replace, and find.

http://interactivepython.org/runestone/static/thinkcspy/Strings/StringMethods.html
https://docs.python.org/3/library/stdtypes.html#str

Worksheet - Exercise 2
phrase = "WWU is in Bellingham"
phrase = phrase[:19] + phrase[19].upper()

def capitalize_last(in_str):
 """ Return a copy of in_str with its
 last letter capitalized.
 """

Write a function that capitalizes the last letter of any string:

Example:
capitalize_last(“Mix")) # => "MiX"

Worksheet - Exercise 3
Rewrite the function from Exercise 1 using the
find method and slicing to avoid using a
loop.

def remove_comments(string):
 """ Return a copy of string, but with
 all characters starting with the first
 # symbol removed. If there is no # in
 the string, return input unchanged.
 """

Next time: Lists

