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String Manipulation
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Announcements
• Midterm grades are out, along with a long 

announcement with many details. Among them:

• Review your exam on Gradescope for 2 bonus points

• Grades are curved

• If you do better on the final, it will replace your midterm grade.

• A4 is due Friday.

• I’ve updated the rubric - it’s now worth 80 points.

• If you haven’t started yet, start now.



Goals
• Review what we know already about strings:


• the str type, + and * operators, len function



Last time…
• Returning from functions


• Using functions to wrap up complex things


• Function definition order


• Tuples: 


• packing, unpacking via the assignment operator


• as return values and as parameters



A new data type: tuples
• A tuple is a sequence of values, optionally 

enclosed in parens.


• You can “pack” and “unpack” them using 
assignment statements:

(1, 4, “Mufasa”)

v = (1, 4, "Mufasa") # "packing"

(a, b, c) = v # "unpacking"

(of any types!)



• Every function should have a docstring 
describing its behavior.


• When applicable, a docstring should 
include:


• Preconditions: any assumptions the function must 
make to work.


• Postconditions: things that are guaranteed to be true 
after the function finishes executing.

Docstrings, Preconditions 
and Postconditions
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Tuples are sequences,
These two loops do the same thing:

for number in (1, 3):
    print(number, ">", sep="<", end="")

for number in [1, 3]:
    print(number, ">", sep=“<", end="")

so they can be used in for loops just like lists and ranges.

What do they print?
A. <1>  

<3>  

B. 1><3

C. 1<>3  
 

D. 1<>3<>
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• Working with a neighbor: do your answers 
agree? (2 minutes)
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Today: Strings
Don’t we already know about strings?

type("hello")  

print("Hello")  

"Hello" + “World"  

len("abc")  

"na" * 16 + " Batman!"

# => <class ‘str’>

 # prints Hello to the console

# => “HelloWorld”

# => … "nananananananananananananananana Batman!"

# => 3
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Strings are sequences,
Check this out:
for letter in "Bellingham":
    print(letter, "-", sep="", end="")

so they can be used in for loops just like lists and ranges.

What does this print?

A. Bellingham
B. B-e-l-l-i-n-g-h-a-m
C. -B-e-l-l-i-n-g-h-a-m
D. B-e-l-l-i-n-g-h-a-m-



Exercise (not collected)
Write a function that prints a string with all 
vowels removed.
def remove_vowels(string):
    """ Print string, but with no vowels.
        Don't count y as a vowel. """

Modification: Return the modified string instead of printing it.
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Indexing into Strings
Strings are collections of individual characters.

We can get access to an individual character by index.

(just smaller strings!)

outlook = “Summer is near”

How is this stored in memory?

outlook[0] # => "S" 

0 1 2 3 4 5 6 7 8 9 10 11 12 13

S u m m e r i s n e a r

Index:
Value:

str

Indices in Python begin at 0.Syntax:

outlook

outlook[4] # => "e" 

Spaces are characters too!

outlook[6] # => " " 
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Indexing into Strings

Problem: Return a string with any text after and including 
the # symbol removed.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

S u m m e r i s n e a r

Index:
Value:

Strings are collections of individual characters.

We can get access to an individual character by index.

(just smaller strings!)
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Indexing into Strings

ABCD: What is the index of the last character of a string s?

0 1 2 3 4 5 6 7 8 9 10 11 12 13

S u m m e r i s n e a r

Index:
Value:

A. len(s)
B. len(s - 1)
C. len(s + 1)
D. 42
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No.



A4: Pseudocode
    # Let p be a random point in the window
    # loop 10000 times:
    #     c = a random corner of the triangle
    #     m = the midpoint between p and c
    #     choose a color for m
    #     color the pixel at m
    #     p=m
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A4: Demo
    # Let p be a random point in the window
    # loop 10000 times:
    #     c = a random corner of the triangle
    #     m = the midpoint between p and c
    #     choose a color for m
    #     color the pixel at m
    #     p=m

Demo:

• solution in action

• making up function names


