
CSCI 141
Lecture 16

String Manipulation

Announcements

Announcements
• Midterm grades are out, along with a long

announcement with many details. Among them:

Announcements
• Midterm grades are out, along with a long

announcement with many details. Among them:

• Review your exam on Gradescope for 2 bonus points

Announcements
• Midterm grades are out, along with a long

announcement with many details. Among them:

• Review your exam on Gradescope for 2 bonus points

• Grades are curved

Announcements
• Midterm grades are out, along with a long

announcement with many details. Among them:

• Review your exam on Gradescope for 2 bonus points

• Grades are curved

• If you do better on the final, it will replace your midterm grade.

Announcements
• Midterm grades are out, along with a long

announcement with many details. Among them:

• Review your exam on Gradescope for 2 bonus points

• Grades are curved

• If you do better on the final, it will replace your midterm grade.

• A4 is due Friday.

Announcements
• Midterm grades are out, along with a long

announcement with many details. Among them:

• Review your exam on Gradescope for 2 bonus points

• Grades are curved

• If you do better on the final, it will replace your midterm grade.

• A4 is due Friday.

• I’ve updated the rubric - it’s now worth 80 points.

Announcements
• Midterm grades are out, along with a long

announcement with many details. Among them:

• Review your exam on Gradescope for 2 bonus points

• Grades are curved

• If you do better on the final, it will replace your midterm grade.

• A4 is due Friday.

• I’ve updated the rubric - it’s now worth 80 points.

• If you haven’t started yet, start now.

Goals
• Review what we know already about strings:

• the str type, + and * operators, len function

Last time…
• Returning from functions

• Using functions to wrap up complex things

• Function definition order

• Tuples:

• packing, unpacking via the assignment operator

• as return values and as parameters

A new data type: tuples
• A tuple is a sequence of values, optionally

enclosed in parens.

• You can “pack” and “unpack” them using
assignment statements:

(1, 4, “Mufasa”)

v = (1, 4, "Mufasa") # "packing"

(a, b, c) = v # "unpacking"

(of any types!)

• Every function should have a docstring
describing its behavior.

• When applicable, a docstring should
include:

• Preconditions: any assumptions the function must
make to work.

• Postconditions: things that are guaranteed to be true
after the function finishes executing.

Docstrings, Preconditions
and Postconditions

Reminder: Docstrings,
Preconditions and Postconditions

Example. Suppose you wrote this function:
def split_bill(bill_amt, tip_pct, num_diners):
 """ Return the total owed by each diner for a
 restaurant bill of bill_amt, assuming a tip
 percent of tip_pct and splitting the bill
 evenly among num_diners people.

 """
 total = bill_amt + (bill_amt * tip_pct/100)
 return total / num_diners

Reminder: Docstrings,
Preconditions and Postconditions

Example. Suppose you wrote this function:
def split_bill(bill_amt, tip_pct, num_diners):
 """ Return the total owed by each diner for a
 restaurant bill of bill_amt, assuming a tip
 percent of tip_pct and splitting the bill
 evenly among num_diners people.

 """
 total = bill_amt + (bill_amt * tip_pct/100)
 return total / num_diners

Reminder: Docstrings,
Preconditions and Postconditions

Example. Suppose you wrote this function:
def split_bill(bill_amt, tip_pct, num_diners):
 """ Return the total owed by each diner for a
 restaurant bill of bill_amt, assuming a tip
 percent of tip_pct and splitting the bill
 evenly among num_diners people.

 """
 total = bill_amt + (bill_amt * tip_pct/100)
 return total / num_diners

>>> split_bill(34.78, 18.0, 0)

Reminder: Docstrings,
Preconditions and Postconditions

Example. Suppose you wrote this function:
def split_bill(bill_amt, tip_pct, num_diners):
 """ Return the total owed by each diner for a
 restaurant bill of bill_amt, assuming a tip
 percent of tip_pct and splitting the bill
 evenly among num_diners people.

 """
 total = bill_amt + (bill_amt * tip_pct/100)
 return total / num_diners

>>> split_bill(34.78, 18.0, 0)

ZeroDivisionError: float division by zero

Reminder: Docstrings,
Preconditions and Postconditions

Example. Suppose you wrote this function:
def split_bill(bill_amt, tip_pct, num_diners):
 """ Return the total owed by each diner for a
 restaurant bill of bill_amt, assuming a tip
 percent of tip_pct and splitting the bill
 evenly among num_diners people.

 """
 total = bill_amt + (bill_amt * tip_pct/100)
 return total / num_diners

>>> split_bill(34.78, 18.0, 0)

ZeroDivisionError: float division by zero

Bad news:

Reminder: Docstrings,
Preconditions and Postconditions

Example. Suppose you wrote this function:
def split_bill(bill_amt, tip_pct, num_diners):
 """ Return the total owed by each diner for a
 restaurant bill of bill_amt, assuming a tip
 percent of tip_pct and splitting the bill
 evenly among num_diners people.

 """
 total = bill_amt + (bill_amt * tip_pct/100)
 return total / num_diners

>>> split_bill(34.78, 18.0, 0)

This is your fault.
ZeroDivisionError: float division by zero

Bad news:

Docstrings, Preconditions
and Postconditions

Example. Suppose you wrote this function:
def split_bill(bill_amt, tip_pct, num_diners):
 """ Return the total owed by each diner for a
 restaurant bill of bill_amt, assuming a tip
 percent of tip_pct and splitting the bill
 evenly among num_diners people.
 Precondition: num_diners > 0
 """
 total = bill_amt + (bill_amt * tip_pct/100)
 return total / num_diners

Docstrings, Preconditions
and Postconditions

Example. Suppose you wrote this function:
def split_bill(bill_amt, tip_pct, num_diners):
 """ Return the total owed by each diner for a
 restaurant bill of bill_amt, assuming a tip
 percent of tip_pct and splitting the bill
 evenly among num_diners people.
 Precondition: num_diners > 0
 """
 total = bill_amt + (bill_amt * tip_pct/100)
 return total / num_diners

Docstrings, Preconditions
and Postconditions

Example. Suppose you wrote this function:
def split_bill(bill_amt, tip_pct, num_diners):
 """ Return the total owed by each diner for a
 restaurant bill of bill_amt, assuming a tip
 percent of tip_pct and splitting the bill
 evenly among num_diners people.
 Precondition: num_diners > 0
 """
 total = bill_amt + (bill_amt * tip_pct/100)
 return total / num_diners

>>> split_bill(34.78, 18.0, 0)

Docstrings, Preconditions
and Postconditions

Example. Suppose you wrote this function:
def split_bill(bill_amt, tip_pct, num_diners):
 """ Return the total owed by each diner for a
 restaurant bill of bill_amt, assuming a tip
 percent of tip_pct and splitting the bill
 evenly among num_diners people.
 Precondition: num_diners > 0
 """
 total = bill_amt + (bill_amt * tip_pct/100)
 return total / num_diners

>>> split_bill(34.78, 18.0, 0)

ZeroDivisionError: float division by zero

Docstrings, Preconditions
and Postconditions

Example. Suppose you wrote this function:
def split_bill(bill_amt, tip_pct, num_diners):
 """ Return the total owed by each diner for a
 restaurant bill of bill_amt, assuming a tip
 percent of tip_pct and splitting the bill
 evenly among num_diners people.
 Precondition: num_diners > 0
 """
 total = bill_amt + (bill_amt * tip_pct/100)
 return total / num_diners

>>> split_bill(34.78, 18.0, 0)

This is my fault.
ZeroDivisionError: float division by zero

Tuples are sequences,
These two loops do the same thing:

for number in (1, 3):
 print(number, ">", sep="<", end="")

for number in [1, 3]:
 print(number, ">", sep=“<", end="")

so they can be used in for loops just like lists and ranges.

Tuples are sequences,
These two loops do the same thing:

for number in (1, 3):
 print(number, ">", sep="<", end="")

for number in [1, 3]:
 print(number, ">", sep=“<", end="")

so they can be used in for loops just like lists and ranges.

What do they print?
A. <1>  

<3>  

B. 1><3

C. 1<>3  
 

D. 1<>3<>

Today’s Quiz
• 3 minutes

Today’s Quiz
• 3 minutes

• Working with a neighbor: do your answers
agree? (2 minutes)

Today: Strings
Don’t we already know about strings?

Today: Strings
Don’t we already know about strings?

type("hello")  

Today: Strings
Don’t we already know about strings?

type("hello")   # => <class ‘str’>

Today: Strings
Don’t we already know about strings?

type("hello")  

print("Hello")  

=> <class ‘str’>

Today: Strings
Don’t we already know about strings?

type("hello")  

print("Hello")  

=> <class ‘str’>

 # prints Hello to the console

Today: Strings
Don’t we already know about strings?

type("hello")  

print("Hello")  

"Hello" + “World"  

=> <class ‘str’>

 # prints Hello to the console

Today: Strings
Don’t we already know about strings?

type("hello")  

print("Hello")  

"Hello" + “World"  

=> <class ‘str’>

 # prints Hello to the console

=> “HelloWorld”

Today: Strings
Don’t we already know about strings?

type("hello")  

print("Hello")  

"Hello" + “World"  

len("abc")  

=> <class ‘str’>

 # prints Hello to the console

=> “HelloWorld”

Today: Strings
Don’t we already know about strings?

type("hello")  

print("Hello")  

"Hello" + “World"  

len("abc")  

=> <class ‘str’>

 # prints Hello to the console

=> “HelloWorld”

=> 3

Today: Strings
Don’t we already know about strings?

type("hello")  

print("Hello")  

"Hello" + “World"  

len("abc")  

"na" * 16 + " Batman!"

=> <class ‘str’>

 # prints Hello to the console

=> “HelloWorld”

=> 3

Today: Strings
Don’t we already know about strings?

type("hello")  

print("Hello")  

"Hello" + “World"  

len("abc")  

"na" * 16 + " Batman!"

=> <class ‘str’>

 # prints Hello to the console

=> “HelloWorld”

=> …

=> 3

Today: Strings
Don’t we already know about strings?

type("hello")  

print("Hello")  

"Hello" + “World"  

len("abc")  

"na" * 16 + " Batman!"

=> <class ‘str’>

 # prints Hello to the console

=> “HelloWorld”

=> … "nananananananananananananananana Batman!"

=> 3

Strings: What else is there?

Strings: What else is there?
def house_number(address_line):

Strings: What else is there?
def house_number(address_line):
 """ Return the house number portion of

Strings: What else is there?
def house_number(address_line):
 """ Return the house number portion of
 the given address line.

Strings: What else is there?
def house_number(address_line):
 """ Return the house number portion of
 the given address line.
 Examples:

Strings: What else is there?
def house_number(address_line):
 """ Return the house number portion of
 the given address line.
 Examples:
 house_number("1600 Pennsylvania Ave")

Strings: What else is there?
def house_number(address_line):
 """ Return the house number portion of
 the given address line.
 Examples:
 house_number("1600 Pennsylvania Ave")
 => 1600

Strings: What else is there?
def house_number(address_line):
 """ Return the house number portion of
 the given address line.
 Examples:
 house_number("1600 Pennsylvania Ave")
 => 1600
 house_number("221B Baker St")

Strings: What else is there?
def house_number(address_line):
 """ Return the house number portion of
 the given address line.
 Examples:
 house_number("1600 Pennsylvania Ave")
 => 1600
 house_number("221B Baker St")
 => 221

Strings: What else is there?
def house_number(address_line):
 """ Return the house number portion of
 the given address line.
 Examples:
 house_number("1600 Pennsylvania Ave")
 => 1600
 house_number("221B Baker St")
 => 221
 """

Strings: What else is there?
def house_number(address_line):
 """ Return the house number portion of
 the given address line.
 Examples:
 house_number("1600 Pennsylvania Ave")
 => 1600
 house_number("221B Baker St")
 => 221
 """
 # ????

Strings: What else is there?
def house_number(address_line):
 """ Return the house number portion of
 the given address line.
 Examples:
 house_number("1600 Pennsylvania Ave")
 => 1600
 house_number("221B Baker St")
 => 221
 """
 # ????
 return result

Strings: What else is there?
def house_number(address_line):
 """ Return the house number portion of
 the given address line.
 Examples:
 house_number("1600 Pennsylvania Ave")
 => 1600
 house_number("221B Baker St")
 => 221
 """
 # ????
 return result

Strings: What else is there?

Strings: What else is there?

def ignore_comments(line_of_code):

Strings: What else is there?

def ignore_comments(line_of_code):
 """ Return a line of code with any comments

Strings: What else is there?

def ignore_comments(line_of_code):
 """ Return a line of code with any comments
 after a # sign removed.

Strings: What else is there?

def ignore_comments(line_of_code):
 """ Return a line of code with any comments
 after a # sign removed.
 """

Strings: What else is there?

def ignore_comments(line_of_code):
 """ Return a line of code with any comments
 after a # sign removed.
 """
 # ????

Strings: What else is there?

def ignore_comments(line_of_code):
 """ Return a line of code with any comments
 after a # sign removed.
 """
 # ????
 return result

Strings: What else is there?

def ignore_comments(line_of_code):
 """ Return a line of code with any comments
 after a # sign removed.
 """
 # ????
 return result

Strings are sequences,
Check this out:
for letter in "Bellingham":
 print(letter, "-", sep="", end="")

so they can be used in for loops just like lists and ranges.

Strings are sequences,
Check this out:
for letter in "Bellingham":
 print(letter, "-", sep="", end="")

so they can be used in for loops just like lists and ranges.

What does this print?

A. Bellingham
B. B-e-l-l-i-n-g-h-a-m
C. -B-e-l-l-i-n-g-h-a-m
D. B-e-l-l-i-n-g-h-a-m-

Exercise (not collected)
Write a function that prints a string with all
vowels removed.
def remove_vowels(string):
 """ Print string, but with no vowels.
 Don't count y as a vowel. """

Modification: Return the modified string instead of printing it.

Indexing into Strings
Strings are collections of individual characters.

We can get access to an individual character by index.

(just smaller strings!)

outlook = “Summer is near”

How is this stored in memory?

Indexing into Strings
Strings are collections of individual characters.

We can get access to an individual character by index.

(just smaller strings!)

outlook = “Summer is near”

How is this stored in memory?

outlook

Indexing into Strings
Strings are collections of individual characters.

We can get access to an individual character by index.

(just smaller strings!)

outlook = “Summer is near”

How is this stored in memory?

0 1 2 3 4 5 6 7 8 9 10 11 12 13

S u m m e r i s n e a r

Index:
Value:

str
outlook

Indexing into Strings
Strings are collections of individual characters.

We can get access to an individual character by index.

(just smaller strings!)

outlook = “Summer is near”

How is this stored in memory?

0 1 2 3 4 5 6 7 8 9 10 11 12 13

S u m m e r i s n e a r

Index:
Value:

str

Indices in Python begin at 0.

outlook

Indexing into Strings
Strings are collections of individual characters.

We can get access to an individual character by index.

(just smaller strings!)

outlook = “Summer is near”

How is this stored in memory?

0 1 2 3 4 5 6 7 8 9 10 11 12 13

S u m m e r i s n e a r

Index:
Value:

str

Indices in Python begin at 0.Syntax:

outlook

Indexing into Strings
Strings are collections of individual characters.

We can get access to an individual character by index.

(just smaller strings!)

outlook = “Summer is near”

How is this stored in memory?

outlook[0] # => "S"

0 1 2 3 4 5 6 7 8 9 10 11 12 13

S u m m e r i s n e a r

Index:
Value:

str

Indices in Python begin at 0.Syntax:

outlook

Indexing into Strings
Strings are collections of individual characters.

We can get access to an individual character by index.

(just smaller strings!)

outlook = “Summer is near”

How is this stored in memory?

outlook[0] # => "S"

0 1 2 3 4 5 6 7 8 9 10 11 12 13

S u m m e r i s n e a r

Index:
Value:

str

Indices in Python begin at 0.Syntax:

outlook

outlook[4] # => "e"

Indexing into Strings
Strings are collections of individual characters.

We can get access to an individual character by index.

(just smaller strings!)

outlook = “Summer is near”

How is this stored in memory?

outlook[0] # => "S"

0 1 2 3 4 5 6 7 8 9 10 11 12 13

S u m m e r i s n e a r

Index:
Value:

str

Indices in Python begin at 0.Syntax:

outlook

outlook[4] # => "e"

Spaces are characters too!

Indexing into Strings
Strings are collections of individual characters.

We can get access to an individual character by index.

(just smaller strings!)

outlook = “Summer is near”

How is this stored in memory?

outlook[0] # => "S"

0 1 2 3 4 5 6 7 8 9 10 11 12 13

S u m m e r i s n e a r

Index:
Value:

str

Indices in Python begin at 0.Syntax:

outlook

outlook[4] # => "e"

Spaces are characters too!

outlook[6] # => " "

Indexing into Strings

Problem: Return a string with any text after and including
the # symbol removed.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

S u m m e r i s n e a r

Index:
Value:

Strings are collections of individual characters.

We can get access to an individual character by index.

def remove_comments(string):
 """ Remove all characters starting
 with a # symbol from string, and
 return the result. """

Indexing into Strings

Problem: Return a string with any text after and including
the # symbol removed.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

S u m m e r i s n e a r

Index:
Value:

Strings are collections of individual characters.

We can get access to an individual character by index.

(just smaller strings!)

def remove_comments(string):
 """ Remove all characters starting
 with a # symbol from string, and
 return the result. """

Indexing into Strings

ABCD: What is the index of the last character of a string s?

0 1 2 3 4 5 6 7 8 9 10 11 12 13

S u m m e r i s n e a r

Index:
Value:

A. len(s)
B. len(s - 1)
C. len(s + 1)
D. 42

A4 (Revisited, briefly)
Your task:
Draw this.

A4 (Revisited, briefly)
Your task:
Draw this.

Sounds
simple,
right?

A4 (Revisited, briefly)
Your task:
Draw this.

Sounds
simple,
right?

No.

A4: Pseudocode
 # Let p be a random point in the window
 # loop 10000 times:
 # c = a random corner of the triangle
 # m = the midpoint between p and c
 # choose a color for m
 # color the pixel at m
 # p=m

A4: Demo
 # Let p be a random point in the window
 # loop 10000 times:
 # c = a random corner of the triangle
 # m = the midpoint between p and c
 # choose a color for m
 # color the pixel at m
 # p=m

A4: Demo
 # Let p be a random point in the window
 # loop 10000 times:
 # c = a random corner of the triangle
 # m = the midpoint between p and c
 # choose a color for m
 # color the pixel at m
 # p=m

Demo:

• solution in action

• making up function names

