
CSCI 141
Lecture 16

Finishing up Functions:

Returning Early

Tuples

Function Composition and Managing Complexity

Happenings
Tuesday, 5/14 – Peer Lecture Series: Unity Workshop
– 4 pm in CF 165
Tuesday, 5/14 – AIA Presents: AI in Education
– 6 pm in PH 228
Wednesday, 5/15 – Cybersecurity Lecture Series: Weaponizing
Unicode with Aaron Brown
-- 5 pm in CF 105
Wednesday, 5/15 – Scholars Week, University Distinguished
Lectures: Dr. Brian Hutchinson and The Broad Applicability of Deep
Learning
– 5 pm in Carver 104

https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fpeer-lecture-series-unity-workshop-0&data=02%7C01%7Cwehrwes%40wwu.edu%7Ca66a75ca3f854a6c49af08d6d4d4ef48%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636930408362578085&sdata=8CtPqVq%2B95T7%2BPyKXrmOcC%2B9548U9%2BK%2BIGc5H7mHy84%3D&reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Faia-presents-ai-education&data=02%7C01%7Cwehrwes%40wwu.edu%7Ca66a75ca3f854a6c49af08d6d4d4ef48%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636930408362588089&sdata=AstLdo%2B3Lrt2Cdqb2pumhx7%2Bgyjt9dA8iudEfERBCeE%3D&reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fcybersecurity-lecture-series-aaron-brown&data=02%7C01%7Cwehrwes%40wwu.edu%7Ca66a75ca3f854a6c49af08d6d4d4ef48%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636930408362588089&sdata=GaybJWB968bV3H0VsQ0oMm2QGAaoCSij5D60qQfN5P0%3D&reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fcybersecurity-lecture-series-aaron-brown&data=02%7C01%7Cwehrwes%40wwu.edu%7Ca66a75ca3f854a6c49af08d6d4d4ef48%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636930408362588089&sdata=GaybJWB968bV3H0VsQ0oMm2QGAaoCSij5D60qQfN5P0%3D&reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fcybersecurity-lecture-series-aaron-brown&data=02%7C01%7Cwehrwes%40wwu.edu%7Ca66a75ca3f854a6c49af08d6d4d4ef48%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636930408362588089&sdata=GaybJWB968bV3H0VsQ0oMm2QGAaoCSij5D60qQfN5P0%3D&reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Funiversity-distinguished-lecturer-dr-brian-hutchinson&data=02%7C01%7Cwehrwes%40wwu.edu%7Ca66a75ca3f854a6c49af08d6d4d4ef48%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636930408362598099&sdata=9wyhhce01bEpHwJWUh2vtJCGfsplgdKhQVnB%2B%2FW2cdU%3D&reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Funiversity-distinguished-lecturer-dr-brian-hutchinson&data=02%7C01%7Cwehrwes%40wwu.edu%7Ca66a75ca3f854a6c49af08d6d4d4ef48%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636930408362598099&sdata=9wyhhce01bEpHwJWUh2vtJCGfsplgdKhQVnB%2B%2FW2cdU%3D&reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Funiversity-distinguished-lecturer-dr-brian-hutchinson&data=02%7C01%7Cwehrwes%40wwu.edu%7Ca66a75ca3f854a6c49af08d6d4d4ef48%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636930408362598099&sdata=9wyhhce01bEpHwJWUh2vtJCGfsplgdKhQVnB%2B%2FW2cdU%3D&reserved=0

Announcements
• Midterm grades are not out yet. Working on it,

and they’ll be out ASAP.

• Get started on A4 soon: Demo in class today.

• Due 1 week from today.

Goals
• Understand the basic usage of tuples:

• using tuples to return multiple values from a function

• packing and unpacking via the assignment operator

• Begin to understand how to use function
composition to express complicated
computations as clearly and simply as
possible.

Function Calls:
A Model for Execution

def axpy(a, x, y):
 """ Print a * x + y """
 product = a * x
 result = product + y
 return result

a1 = 2
x1 = 3
print(axpy(a1, x1, 4))

1. Evaluate all arguments

2. Assign argument values to
parameter variables

3. Execute the function body

4. When done, replace the
function call with its return
value.

Variable Scope: Reminder
def print_rectangle_area(width, height):
 """Print area of width-by-height rectangle"""
 area = width * height
 print(area)
w = 4
h = 3
print_rectangle_area(w, h)

Facts:
• width and height are parameters

• area is a local variable

• w, and h are global variables 

• All parameters are also local variables

• The scope of local variables is limited to the function they’re

defined in.

A note on the order of
function definitions

def a():
 return 10

def b():
 return a() * 10

b()

Not much interesting going on here.

def b():
 return a() * 10

def a():
 return 10

b()

A note on the order of
function definitions

• b calls a in its definition

• The call isn’t executed until b is called

• As long as a has been defined by the time b is called,

this is fine.

(it actually is!)

Today’s Quiz
• 3 minutes

Today’s Quiz
• 3 minutes

• Working with a neighbor: do your answers
agree? (2 minutes)

Returning values
New statement: the return statement

Syntax:

Behavior:

1. expression is evaluated

2. the function stops executing further statements

3. the value of expression is returned 
i.e., the function call evaluates to the returned value

return expression (can only appear inside a
function definition)

Returning Early: Demo
def sign(x):
 “”” Return -1 if x < 0,
 1 if x > 0,
 or 0 if x == 0 “””
 # code here

Returning Early: Demo
def sign(x):
 “”” Return -1 if x < 0,
 1 if x > 0,
 or 0 if x == 0 “””
 # code here

Midpoint Function
def midpoint(p1x, p1y, p2x, p2y):
 “”” Return the midpoint between
 (p1x, p1y) and (p2x, p2y)
 “””
 # code here

(mid_x, mid_y)

This is two
things!?

Can we return
two things?

Midpoint Function
def midpoint(p1x, p1y, p2x, p2y):
 “”” Return the midpoint between
 (p1x, p1y) and (p2x, p2y)
 “””
 # code here
 # mid_x = . . .
 # mid_y = . . .

(mid_x, mid_y)

Midpoint Function
def midpoint(p1x, p1y, p2x, p2y):
 “”” Return the midpoint between
 (p1x, p1y) and (p2x, p2y)
 “””
 # code here
 # mid_x = . . .
 # mid_y = . . .

 return mid_x, mid_y

(mid_x, mid_y)

Returning Multiple Values
• You can return multiple values from a

function by grouping them into a comma-
separated sequence: 
 

• You can assign each to a variable when
calling the function:

return mid_x, mid_y

mx, my = midpoint(p1x, p1y, p2x, p2y)

These are actually tuples
• A tuple is a sequence of values, optionally

enclosed in parens.

• You can “pack” and “unpack” them using
assignment statements:

(1, 4, “Mufasa”)

v = (1, 4, "Mufasa") # packing

(a, b, c) = v # "unpacking"

(of any types!)

These are actually tuples
• Tuples can also be passed into functions as

arguments:
def midpoint(p1, p2):
 “””Compute the midpoint between p1 and p2”””
 p1x, p1y = p1
 p2x, p2y = p2

 # . . .
 # return mx, my

Tuples: Demo

Tuples: Demo
• assignment, packing, unpacking

• with and without parens (printing)

• swapping

• equality

• mismatched # values to unpack

ABCD: Tuples
See code example (tuples_abcd.py)

Midpoint Function
def midpoint(p1x, p1y, p2x, p2y):
 “”” Return the midpoint between
 (p1x, p1y) and (p2x, p2y)
 “””
 # code here
 # mid_x = . . .
 # mid_y = . . .

 return mid_x, mid_y

Midpoint Function

Midpoint Function
 # mid_x = . . .
 # mid_y = . . .

Okay, but how do you actually calculate this?

(p1x, p1y)

(p2x, p2y)

mid_x

mid_y
(mid_x,mid_y)

(on the board) mid_x = (p1x + p2x) / 2
mid_y = (p1y + p2y) / 2

Demo: writing the midpoint
function

• With tuple as return value

• Switch to tuples as parameters for points

Why write functions?
• The convenience of repetition:

• you can define a function once then call it as many times as you want

• Example: using turtle_square to create a snowflake

• The power of customized repetition:

• you can define a function that takes arguments to customize the task it performs:
this is powerful!

• Example: using draw_polygon to draw an any-sided polygon

• The clarity of abstraction via function composition.

• We can hide complexity behind simple function calls to make complicated
calculations easier to think about and write.

Function Composition
Here’s a made-up equation:

x = (a + b)**2 - d // 12
y = (a**2 - 0.5*a*c)
z = alpha * (dx**2 + dy**2)

final_result = x + y + z

It’s pretty incomprehensible, even if you do know
what a, b, d, c, alpha, dx, and dy mean.

Here’s a nicer way to write it:

final_result = (a + b)**2 - d // 12 + (a**2 - 0.5*a*c) + alpha * (dx**2 + dy**2)

Function Composition
Here’s a made-up equation:

final_result = (a + b)**2 - d // 12 + (a**2 - 0.5*a*c) + alpha * (dx**2 + dy**2)

What if x, y, and z
weren’t expressions, but
more complicated
computation requiring
(for example) for loops
to compute?

def calc_x(a, b, d):
 # calculation of x

def calc_y(a, c):
 # calculation of y

def calc_z(alpha, dx, dy):
 # calculation of z

x = calc_x(a, b, d)
y = calc_y(a, c)
z = calc_z(alpha, dx, dy)
final_result = x + y + z

Function Composition
Here’s a made-up equation:

final_result = (a + b)**2 - d // 12 + (a**2 - 0.5*a*c) + alpha * (dx**2 + dy**2)

What if x, y, and z
weren’t expressions, but
more complicated
computation requiring
(for example) for loops
to compute?

def calc_x(a, b, d):
 # calculation of x

def calc_y(a, c):
 # calculation of y

def calc_z(alpha, dx, dy):
 # calculation of z

x = calc_x(a, b, d)
y = calc_y(a, c)
z = calc_z(alpha, dx, dy)
intermediate_result = x + y + z

What if this is just an
intermediate result that
goes into an even
larger calculation?

Function Composition
Here’s a made-up equation:

final_result = (a + b)**2 - d // 12 + (a**2 - 0.5*a*c) + alpha * (dx**2 + dy**2)

What if x, y, and z
weren’t expressions, but
more complicated
computation requiring
(for example) for loops
to compute?

def calc_x(a, b, d):
 # calculation of x

def calc_y(a, c):
 # calculation of y

def calc_z(alpha, dx, dy):
 # calculation of z

def calc_gamma(a,b,c,d,alpha,dx,dy):
 x = calc_x(a, b, d)
 y = calc_y(a, c)
 z = calc_z(alpha, dx, dy)
 return x + y + z

What if this is just an
intermediate result that
goes into an even
larger calculation?

A4
Your task:
Draw this.

Sounds
simple,
right?

No.

A4: Pseudocode
 # Let p be a random point in the window
 # loop 10000 times:
 # c = a random corner of the triangle
 # m = the midpoint between p and c
 # choose a color for m
 # color the pixel at m
 # p=m

A4: Demo
 # Let p be a random point in the window
 # loop 10000 times:
 # c = a random corner of the triangle
 # m = the midpoint between p and c
 # choose a color for m
 # color the pixel at m
 # p=m

A4: Demo
 # Let p be a random point in the window
 # loop 10000 times:
 # c = a random corner of the triangle
 # m = the midpoint between p and c
 # choose a color for m
 # color the pixel at m
 # p=m

Demo:

• solution in action

• making up function names

