CSCI 141

Lecture 15
Functions:
More Scope, Return Values
Tuples

Announcements

Announcements

- A4 out today, due Friday 5/17

Announcements

- A4 out today, due Friday 5/17

» Midterm grades should be out Thursday night

Announcements

- A4 out today, due Friday 5/17

» Midterm grades should be out Thursday night

» Released via Gradescope: you’ll receive an email with
instructions on how to login and see your feedback.

Announcements

- A4 out today, due Friday 5/17

» Midterm grades should be out Thursday night

» Released via Gradescope: you’ll receive an email with
instructions on how to login and see your feedback.

« |Last lecture’s worksheet Exercise 3 has a
typo:

Announcements

- A4 out today, due Friday 5/17

» Midterm grades should be out Thursday night

» Released via Gradescope: you’ll receive an email with
instructions on how to login and see your feedback.

« |Last lecture’s worksheet Exercise 3 has a
typo:

- Should say: Defines a function that takes a single argument
and prints the fourth power of the input argument.

Goals

Know how to use parameters to refer to the input
arguments of a function

Know the meaning of local variables and variable scope
and how it relates to function parameters.

Know how to return a value from a function, and the
behavior of the return statement.

Understand the basic usage of tuples:

* using tuples to return multiple values from a function

* packing and unpacking via assignment

Parameters vs Arguments

Parameters: variable names that will refer to
the input arguments.

Parameters (these are new):
variables that take on the value of the arguments

b\

def add2(a, b):
" Print the sum of a and b """
print(a + b)

add2 (4, 10)

1/

Arguments (we’ve seen these before):
values passed into a function.

Parameters are Local Variables

e They only exist inside the function.

 Any other variables declared inside a function
are also local variables.

e This is an example of a broader concept called
scope: a variable’s scope is the set of
statements in which it is visible/usable.

e A local variable’s scope is limited to the
function inside which it’s defined.

Function Calls:
A Model for Execution

def axpy(a, X, Vy):
""" Print a * X + vy

product = a * X
result = product + vy
print(result)

1. Evaluate all arguments

al = 2 2. Assign argument values to

xl =3 parameter variables
print (axpy(al, x1, 4))
3. Execute the function body

4. When done, replace the
function call with its return

value.

Demo via add?2

Demo via add?2

e Using Thonny’s debug mode to see the
local variables inside the scope of a
function:

e passing in values

e passing in variables, which evaluate to values that get
assigned to the parameters

e passing in global variables with the same name, which
get shadowed by the local variables

AJB
C Il

Variable Scope

1 def print rectangle area(width, height):

2 """ Print the area of a width-by-height
3 rectangle """

4

5 area = width * height

6 print (area)

7

8 w = 4

9 h = 3

10 a=w * h

11 print rectangle area(w, h)

B

Variable Scope

1 def print rectangle area(width, height):

2 """ Print the area of a width-by-height
3 rectangle """

4

5 area = width * height

6 print (area)

7 In which line is

8 w = 4 area accessible?
9 h = 3 A 2
10 a = w * h lHII]l B. 6
11 print rectangle area(w, h) CJp) C. 8

D. 10

O ~J O O & W DN K

e
N = O VO

Variable Scope

def print rectangle area(width, height):
""" Print the area of a width-by-height
rectangle """

area = width * height
print (area)

w = 4
h = 3
a =w * h

print rectangle area(w, h)

Variable Scope

1 def print rectangle area(width, height):
2 """ Print the area of a width-by-height
3 rectangle """

4

5 area = width * height

6 print (area)

7

8 w = 4

9 h =3
10 a = w * h
11 print rectangle area(w, h)
12

. print(h * w)

. print(width * height)

. print(w * h)

. print rectangle area(h, w)

Which version of line
A
- E 12 does not do the

< same thing as line 11?

O Qw»

Variable Scope

1 def print rectangle area(width, height):
2 """ Print the area of a width-by-height
3 rectangle """

4

5 area = width * height

6 print (area)

7

8 w = 4

9 h =3
10 a = w * h
11 print rectangle area(w, h)
12

What if | want to do further computation
with the result of the rectangle area?

Variable Scope

1 def print rectangle area(width, height):
2 """ Print the area of a width-by-height
3 rectangle """

4

5 area = width * height

6 print (area)

7

8 w = 4

9 h =3
10 a = w * h
11 print rectangle area(w, h)
12

What if | want to do further computation
with the result of the rectangle area?

It got printed, then it was gone...

Writing Functions: Syntax

def name(parameters):
statements

Two important questions:

1. How does the function use the arguments
(inputs) passed to it?

2. How does the function return a value?

Returning values

New statement: the return statement
Syntax: return expression
Behavior:

1. expression is evaluated

2. the function stops executing further statements

3. the value of expression is returned
l.e., the function call evaluates to the returned value

Returning values

New statement: the return statement

(can only appear inside a

Syntax: return expression function definition)

Behavior:
1. expression is evaluated

2. the function stops executing further statements

3. the value of expression is returned
l.e., the function call evaluates to the returned value

Demo: Make add2 return
Instead of print

Function Syntax: Summary

def keyword| |function name

\ /

def name(parameters):
Specification — " docstringX” " inputs

statements comma-separated
list of parameters:

variable names that

An indented code block that will get assigned to
does any computation, the arguments

executes any effects, and
(optionally) returns a value

effects; return value

Today’s Quiz

e 3 minutes

e Math reminder:

Today’s Quiz

e 3 minutes

 Working with a neighbor: do your answers
agree? (2 minutes)

Distance Function: Demo

Why write functions?

* The convenience of repetition:

e you can define a function once then call it as many times as you want

* The power of customized repetition:

* you can define a function that takes arguments to customize the task
it performs: this is powerful!

e e.g.: one function to draw any size rectangle, or any n-sided polygon

* The power of function composition.

e Functions can call other functions.

Returning values

New statement: the return statement

Syntax: return expression

Behavior:

1. expression is evaluated

2. the function stops executing further statements

3. the value of expression is returned
l.e., the function call evaluates to the returned value

Returning values

New statement: the return statement

(can only appear inside a

Syntax: return expression function definition)

Behavior:
1. expression is evaluated

2. the function stops executing further statements

3. the value of expression is returned
l.e., the function call evaluates to the returned value

Returning Early: Demo

def sign(x):
“armrrr Return -1 1f x < 0,
1 1f x > 0,
or 0 1f x ==
code here

Midpoint Function

def midpoint(plx, ply, p2x, p2y):
“rr Return the midr between

(plx, ply) and p2y)

4 rr n

code here
(mid_x, mid_y)

This I1s two
things!?
Can we return
two things?

Midpoint Function

def midpoint(plx, ply, p2x, p2y):
“rr Return the midr between

(plx, ply) and p2y)

4 rr n

code here
(mid_x, mid_y)

This I1s two
things!?
Can we return
two things?

Midpoint Function

def midpoint(plx, ply, p2x, p2y):
“rr Return the midr between

(plx, ply) and p2y)

4 rr n

code here
mid X = . . . (mid_x, mid_y)
mid y =

Midpoint Function

def midpoint(plx, ply, p2x, p2y):
“rr Return the midr between

(plx, ply) and p2y)

4 rr n

code here
mid X = . . . (mid_x, mid_y)
mid y =

return mid X, mid y

Midpoint Function

mid x =
mid y =

Okay, but how do you actually calculate this?
(pzxa DQY)

(mid_x, mid_y)
= mid_y

(p1x, ply) mid X

(on the board)

Midpoint Function

mid x =
mid y =

Okay, but how do you actually calculate this?
(pzxa DQY)

(mid_x, mid_y)
= mid_y

i
(p1x, ply) mid X

mid_X = (p1x + p2x) /2

(on the board) mid_y = (o1, + p2,) / 2

Returning Multiple Values

e You can return multiple values from a
function by grouping them into a comma-
separated sequence:

return mid x, mid y

e YOu can assign each to a variable when
calling the function:

midpoint (plx, ply, p2x, p2y)

mx, my

These are actually tuples

e A tuple is a sequence of values, optionally
enclosed in parens.

(1, 4, “Mufasa”)

e You can “pack” and “unpack” them using
assignment statements:

v = (1, 4, “Mufasa”)

(a, b, ¢c) = v

These are actually tuples

e Tuples can also be passed /into functions as
arguments:

def midpoint(pl, p2):
“rrCompute the midpoint between pl and p2”””

plx, ply = pl
p2x, p2y = p2
.

return mx, my

Tuples: Demo

