
CSCI 141
Lecture 15

Functions:

More Scope, Return Values

Tuples

Announcements

Announcements
• A4 out today, due Friday 5/17

Announcements
• A4 out today, due Friday 5/17

• Midterm grades should be out Thursday night

Announcements
• A4 out today, due Friday 5/17

• Midterm grades should be out Thursday night

• Released via Gradescope: you’ll receive an email with
instructions on how to login and see your feedback.

Announcements
• A4 out today, due Friday 5/17

• Midterm grades should be out Thursday night

• Released via Gradescope: you’ll receive an email with
instructions on how to login and see your feedback.

• Last lecture’s worksheet Exercise 3 has a
typo:

Announcements
• A4 out today, due Friday 5/17

• Midterm grades should be out Thursday night

• Released via Gradescope: you’ll receive an email with
instructions on how to login and see your feedback.

• Last lecture’s worksheet Exercise 3 has a
typo:

• Should say: Defines a function that takes a single argument
and prints the fourth power of the input argument.

Goals
• Know how to use parameters to refer to the input

arguments of a function

• Know the meaning of local variables and variable scope
and how it relates to function parameters.

• Know how to return a value from a function, and the
behavior of the return statement.

• Understand the basic usage of tuples:

• using tuples to return multiple values from a function

• packing and unpacking via assignment

Parameters vs Arguments
Parameters: variable names that will refer to
the input arguments.

def add2(a, b):
 """ Print the sum of a and b """
 print(a + b)

add2(4, 10)

Arguments (we’ve seen these before):

values passed into a function.

Parameters (these are new):

variables that take on the value of the arguments

Parameters are Local Variables

• They only exist inside the function.

• Any other variables declared inside a function
are also local variables.

• This is an example of a broader concept called
scope: a variable’s scope is the set of
statements in which it is visible/usable.

• A local variable’s scope is limited to the
function inside which it’s defined.

Function Calls:
A Model for Execution

def axpy(a, x, y):
 """ Print a * x + y """
 product = a * x
 result = product + y
 print(result)

a1 = 2
x1 = 3
print(axpy(a1, x1, 4))

1. Evaluate all arguments

2. Assign argument values to
parameter variables

3. Execute the function body

4. When done, replace the
function call with its return
value.

Demo via add2

Demo via add2
• Using Thonny’s debug mode to see the

local variables inside the scope of a
function:

• passing in values

• passing in variables, which evaluate to values that get
assigned to the parameters

• passing in global variables with the same name, which
get shadowed by the local variables

Variable Scope
def print_rectangle_area(width, height):
 """ Print the area of a width-by-height
 rectangle """

 area = width * height
 print(area)

w = 4
h = 3
a = w * h
print_rectangle_area(w, h)

1
2
3
4
5
6
7
8
9

10
11

Variable Scope
def print_rectangle_area(width, height):
 """ Print the area of a width-by-height
 rectangle """

 area = width * height
 print(area)

w = 4
h = 3
a = w * h
print_rectangle_area(w, h)

1
2
3
4
5
6
7
8
9

10
11

In which line is
area accessible?

A. 2

B. 6

C. 8

D. 10

Variable Scope
def print_rectangle_area(width, height):
 """ Print the area of a width-by-height
 rectangle """

 area = width * height
 print(area)

w = 4
h = 3
a = w * h
print_rectangle_area(w, h)

1
2
3
4
5
6
7
8
9

10
11
12

Variable Scope
def print_rectangle_area(width, height):
 """ Print the area of a width-by-height
 rectangle """

 area = width * height
 print(area)

w = 4
h = 3
a = w * h
print_rectangle_area(w, h)

1
2
3
4
5
6
7
8
9

10
11
12

Which version of line
12 does not do the
same thing as line 11?

A. print(h * w)
B. print(width * height)
C. print(w * h)
D. print_rectangle_area(h, w)

Variable Scope
def print_rectangle_area(width, height):
 """ Print the area of a width-by-height
 rectangle """

 area = width * height
 print(area)

w = 4
h = 3
a = w * h
print_rectangle_area(w, h)

1
2
3
4
5
6
7
8
9

10
11
12

What if I want to do further computation
with the result of the rectangle area?

Variable Scope
def print_rectangle_area(width, height):
 """ Print the area of a width-by-height
 rectangle """

 area = width * height
 print(area)

w = 4
h = 3
a = w * h
print_rectangle_area(w, h)

1
2
3
4
5
6
7
8
9

10
11
12

What if I want to do further computation
with the result of the rectangle area?
It got printed, then it was gone…

Writing Functions: Syntax

def name(parameters):
 statements

Two important questions:

1. How does the function use the arguments

(inputs) passed to it?

2. How does the function return a value?

Returning values
New statement: the return statement

Syntax:

Behavior:

1. expression is evaluated

2. the function stops executing further statements

3. the value of expression is returned 
i.e., the function call evaluates to the returned value

return expression

Returning values
New statement: the return statement

Syntax:

Behavior:

1. expression is evaluated

2. the function stops executing further statements

3. the value of expression is returned 
i.e., the function call evaluates to the returned value

return expression (can only appear inside a
function definition)

Demo: Make add2 return
instead of print

Function Syntax: Summary

def name(parameters):
 “”” docstring “””
 statements

def keyword function name

comma-separated
list of parameters:

variable names that
will get assigned to
the arguments

An indented code block that
does any computation,
executes any effects, and
(optionally) returns a value

inputs

effects; return value

Specification

Today’s Quiz
• 3 minutes

• Math reminder:

(p1x, p1y)

(p2x, p2y)

a = p2x - p1x

b = p2y - p1yc = sqrt(a2 + b2)

Today’s Quiz
• 3 minutes

• Working with a neighbor: do your answers
agree? (2 minutes)

Distance Function: Demo

Why write functions?
• The convenience of repetition:

• you can define a function once then call it as many times as you want

• The power of customized repetition:

• you can define a function that takes arguments to customize the task
it performs: this is powerful!

• e.g.: one function to draw any size rectangle, or any n-sided polygon

• The power of function composition.

• Functions can call other functions.

Returning values
New statement: the return statement

Syntax:

Behavior:

1. expression is evaluated

2. the function stops executing further statements

3. the value of expression is returned 
i.e., the function call evaluates to the returned value

return expression

Returning values
New statement: the return statement

Syntax:

Behavior:

1. expression is evaluated

2. the function stops executing further statements

3. the value of expression is returned 
i.e., the function call evaluates to the returned value

return expression (can only appear inside a
function definition)

Returning Early: Demo
def sign(x):
 “”” Return -1 if x < 0,
 1 if x > 0,
 or 0 if x == 0 “””
 # code here

Midpoint Function
def midpoint(p1x, p1y, p2x, p2y):
 “”” Return the midpoint between
 (p1x, p1y) and (p2x, p2y)
 “””
 # code here

(mid_x, mid_y)

This is two
things!?

Can we return
two things?

Midpoint Function
def midpoint(p1x, p1y, p2x, p2y):
 “”” Return the midpoint between
 (p1x, p1y) and (p2x, p2y)
 “””
 # code here

(mid_x, mid_y)

This is two
things!?

Can we return
two things?

Midpoint Function
def midpoint(p1x, p1y, p2x, p2y):
 “”” Return the midpoint between
 (p1x, p1y) and (p2x, p2y)
 “””
 # code here
 # mid_x = . . .
 # mid_y = . . .

(mid_x, mid_y)

Midpoint Function
def midpoint(p1x, p1y, p2x, p2y):
 “”” Return the midpoint between
 (p1x, p1y) and (p2x, p2y)
 “””
 # code here
 # mid_x = . . .
 # mid_y = . . .

 return mid_x, mid_y

(mid_x, mid_y)

Midpoint Function
 # mid_x = . . .
 # mid_y = . . .

Okay, but how do you actually calculate this?

(p1x, p1y)

(p2x, p2y)

mid_x

mid_y
(mid_x,mid_y)

(on the board)

Midpoint Function
 # mid_x = . . .
 # mid_y = . . .

Okay, but how do you actually calculate this?

(p1x, p1y)

(p2x, p2y)

mid_x

mid_y
(mid_x,mid_y)

(on the board) mid_x = (p1x + p2x) / 2
mid_y = (p1y + p2y) / 2

Returning Multiple Values
• You can return multiple values from a

function by grouping them into a comma-
separated sequence: 
 

• You can assign each to a variable when
calling the function:

return mid_x, mid_y

mx, my = midpoint(p1x, p1y, p2x, p2y)

These are actually tuples
• A tuple is a sequence of values, optionally

enclosed in parens.

• You can “pack” and “unpack” them using
assignment statements:

(1, 4, “Mufasa”)

v = (1, 4, “Mufasa”)

(a, b, c) = v

These are actually tuples
• Tuples can also be passed into functions as

arguments:
def midpoint(p1, p2):
 “””Compute the midpoint between p1 and p2”””
 p1x, p1y = p1
 p2x, p2y = p2

 # . . .
 # return mx, my

Tuples: Demo

