
CSCI 141
Lecture 14

Functions:

Parameters, Local Variables, Scope, Return Value

Happenings
Wednesday, 5/8 – Peer Lecture Series: IntelliJ Workshop
– 5 pm in CF 162

Thursday, 5/9 – Group Advising to Declare the Premajor!
– 3 pm in CF 420

Thursday, 5/9 – Cultivating an Inclusive Environment in
STEM Panel Discussion – 5 pm in SL 220

https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fpeer-lecture-series-intellij-workshop&data=02%7C01%7Cwehrwes%40wwu.edu%7Cb8d5267c2b974f540cef08d6cf586b57%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636924376015906199&sdata=Rt5SAVp6N747GQmyWDhe3ml%2Fl5QMH11sjS%2Fm1yb5n%2Bg%3D&reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fgroup-advising-declare-cs-premajor-1&data=02%7C01%7Cwehrwes%40wwu.edu%7Cb8d5267c2b974f540cef08d6cf586b57%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636924376015916195&sdata=7B1Y6yUKOijANl7nxCFTE9k1rmp0Ih07Aa9S14HDqF8%3D&reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fcultivating-inclusive-environment-stem&data=02%7C01%7Cwehrwes%40wwu.edu%7Cb8d5267c2b974f540cef08d6cf586b57%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636924376015916195&sdata=Rwfe4nxLlcROwiAO34V83uJe22wOcDxmKjht%2B4n%2BWVg%3D&reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fcultivating-inclusive-environment-stem&data=02%7C01%7Cwehrwes%40wwu.edu%7Cb8d5267c2b974f540cef08d6cf586b57%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636924376015916195&sdata=Rwfe4nxLlcROwiAO34V83uJe22wOcDxmKjht%2B4n%2BWVg%3D&reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fcultivating-inclusive-environment-stem&data=02%7C01%7Cwehrwes%40wwu.edu%7Cb8d5267c2b974f540cef08d6cf586b57%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636924376015916195&sdata=Rwfe4nxLlcROwiAO34V83uJe22wOcDxmKjht%2B4n%2BWVg%3D&reserved=0

Announcements
• Midterm grading is underway - aiming for mid-

week release.

• Lots of new syntax and concepts happening this
week.

• Read Chapter 6 of the textbook and make sure
you understand everything on the the Lab 5
handout.

• You will be responsible for material I don’t cover
in class, but does appear in Chapter 6 or Lab 5.

Goals
• Know the syntax for defining your own functions

• Know how to define and use functions that take no arguments and return
no values

• Know the syntax for triple-quoted strings, and how they are used to write
docstrings that describe a function’s specification.

• Know what does and does not belong in a function specification (see Lab
5)

• Know how to use parameters to refer to the input arguments of a function

• Know the meaning of local variables and variable scope and how it relates
to function parameters.

• Know how to return a value from a function.

Functions, Revisited
What is a function, anyway?
• As a user, you can treat a function as a “black box”:

all you need to know is:

• the inputs, effects, and return value.

• Functions are named chunks of code.

Input(s) Return value
(Effects)

A bunch of (complicated)
stuff is wrapped up in a nice,

easy-to-use package.

Writing Functions: Syntax

def name(parameters):
 statements

Two important questions:

1. How does the function use the arguments

(inputs) passed to it?

2. How does the function return a value?

Let’s dodge these questions for a moment…

Input(s)

Return value
(Effects)

Looking inside the black box…

Functions: the simplest kind
No arguments, no return value:

def name():
 statements

def print_hello():
 print("Hello, world!")

Example:

Demo
• hello_fn.py

Demo
• print_hello

• definition does nothing except make the
function exist

• call it

• can call it whenever/however many times

• can’t call it before it’s defined

Aside: what’s """ this """ about? Two things in one:

• Multiline strings: An alternate way to write strings that
include newlines.

• A docstring: The conventional way to write comments
that describe the purpose and behavior of a function.

def print_rectangle():
 """ Prints a 2x50 rectangle of a
 user-specified character """
 user_char = input("What character? ")
 for i in range(2):
 print(user_char * 50)

Function to print a rectangle
of symbols

Multiline Strings and
Docstrings: Demo

def print_rectangle():
 """ Prints a 2x50 rectangle of a
 user-specified character """
 user_char = input("What character? ")
 for i in range(2):
 print(user_char * 50)

Multiline Strings and
Docstrings: Demo

• Multiline strings: printing, assigning, etc.

• A string on a line by itself has no effect on the program.

• Docstrings in functions are like comments (but aren’t,
technically)

Docstrings
Docstrings are not required by the language.

Docstrings are required by me.

• A docstring tells you what the function
does, but not how it does it.

• In other terms, it tells you what you need to
know to use the function, but not what the
function’s author needed to know to write it.

Docstrings: Example
The (actual) source code for turtle.forward:

 def forward(self, distance):
 """Move the turtle forward by the specified distance.

 Aliases: forward | fd

 Argument:
 distance -- a number (integer or float)

 Move the turtle forward by the specified distance, in the direction
 the turtle is headed.

 Example (for a Turtle instance named turtle):
 >>> turtle.position()
 (0.00, 0.00)
 >>> turtle.forward(25)
 >>> turtle.position()
 (25.00,0.00)
 >>> turtle.forward(-75)
 >>> turtle.position()
 (-50.00,0.00)
 """
 self._go(distance)

Docstring:

Implementation:

Docstrings: Example
Python documentation is generated from the
docstrings in the code!

Worksheet Exercise 1

Exercise 1: Define a function named print_word, which prompts the user to
input a word, and also prompts the user to specify how many times that word
should be printed. The function should then print that word to the screen as many
times as the user has indicated. Invoke the function (hint: the function takes no
parameters (no arguments)).

print_word

Input(s): Return value:

Effects:

• none

prompts the user to input a word and a number of
repetitions

prints the word that many times

• none

def name():
 “”” docstring “””
 statements

Writing Functions: Syntax

def name(parameters):
 statements

Two important questions:

1. How does the function use the arguments

(inputs) passed to it?
2. How does the function return a value?

Writing Functions: Syntax

def name(parameters):
 statements

def keyword function name

1. How does the function use the arguments (inputs) passed to it?

comma-separated
list of parameters:

variable names that
will refer to the input
arguments

inputs

Demo: Function to print a rectangle of
a symbol passed in as an argument.

print_rectangle

Input(s): Return value:

Effects:

• character to make a
rectangle out of

prints a 2x50 rectangle of the given
character to the screen

• none

Writing Functions: Syntax

def name(parameters):
 statements

def keyword function name

1. How does the function use the arguments (inputs) passed to it?

comma-separated
list of parameters:

variable names that
will refer to the input
arguments

inputs

Inside the function, the parameters
act as local variables that refer to
the arguments passed into the
function.

Parameters vs Arguments
Parameters: variable names that will refer to
the input arguments.

def add2(a, b):
 """ Print the sum of a and b """
 print(a + b)

add2(4, 10)

Arguments (we’ve seen these before):

values passed into a function.

Parameters (these are new):

variables that take on the value of the arguments

Parameters are Local Variables

• They only exist inside the function.

• Any other variables declared inside a function
are also local variables.

• This is an example of a broader concept called
scope: a variable’s scope is the set of
statements in which it is visible/usable.

• A local variable’s scope is limited to the
function inside which it’s defined.

Worksheet Exercise 2
Exercise 2: Write (define) a function that adds two
numbers and prints their sum. Then use that
function (invoke it) in a python program.

Parameters and Local
Variables: Demo

• add2.py

Parameters and Local
Variables: Demo

• add2.py:

• parameters as local variables (inaccessible outside fn)

• other local variables

• variables getting passed in

• variables shadowing other variables

