
CSCI 141
Lecture 13:

Midterm review; Functions, continued

• A2 grades out this afternoon.

• Exam material: range(functions)

• that is, 0 up to but not including writing your own functions

Announcements

Announcements
• Sample study problems are posted. Solutions are not verified.

• Many “execute this code” questions.

• Underrepresented topics:

• binary/decimal

• distinction between statements and expressions

• computer hardware (CPU, main memory, fetch/decode/execute)

• Syntax errors

• Modules and imports

• Algorithm development

Goals
• Review for the midterm.

• As time allows:

• Know the syntax for defining your own functions

• Know how to define and use functions that take no arguments and return
no values

• Know how to use parameters to refer to the input arguments of a function

• Know the meaning of local variables and variable scope and how it
relates to function parameters.

• Know how to return a value from a function.

Midterm Review: Questions

Functions, Revisited
What is a function, anyway?
• As a user, you can treat a function as a “black box”:

all you need to know is:

• the inputs, effects, and return value.

• Functions are named chunks of code.

Input(s) Return value
(Effects)

A bunch of (complicated)
stuff is wrapped up in a nice,

easy-to-use package.

Writing Functions: Syntax

def name(parameters):
 statements

Input(s)

Return value
(Effects)

Looking inside the black box…

Writing Functions: Syntax

def name(parameters):
 statements

Two important questions:

Input(s)

Return value
(Effects)

Looking inside the black box…

Writing Functions: Syntax

def name(parameters):
 statements

Two important questions:
1. How does the function use the arguments

(inputs) passed to it?

Input(s)

Return value
(Effects)

Looking inside the black box…

Writing Functions: Syntax

def name(parameters):
 statements

Two important questions:
1. How does the function use the arguments

(inputs) passed to it?
2. How does the function return a value?

Input(s)

Return value
(Effects)

Looking inside the black box…

Writing Functions: Syntax

def name(parameters):
 statements

Two important questions:
1. How does the function use the arguments

(inputs) passed to it?
2. How does the function return a value?

Let’s dodge these questions for a moment…

Input(s)

Return value
(Effects)

Looking inside the black box…

Functions: the simplest kind
No arguments, no return value:

def name():
 statements

def print_hello():
 print("Hello, world!")

Example:

Demo: Function to print a
rectangle of # symbols

print_rectangle

Input(s): Return value:

Effects:

• none

prints a 2x50 rectangle of #s to the screen

• none

def print_rectangle():
 """ Prints a 2x50 rectangle of a
 user-specified character """
 user_char = input("What character? ")
 for i in range(2):
 print(user_char * 50)

Function to print a rectangle
of symbols

Aside: what’s """ this """ about? Two things in one:

def print_rectangle():
 """ Prints a 2x50 rectangle of a
 user-specified character """
 user_char = input("What character? ")
 for i in range(2):
 print(user_char * 50)

Function to print a rectangle
of symbols

Aside: what’s """ this """ about? Two things in one:

• Multiline strings: An alternate way to write strings that
include newlines.

def print_rectangle():
 """ Prints a 2x50 rectangle of a
 user-specified character """
 user_char = input("What character? ")
 for i in range(2):
 print(user_char * 50)

Function to print a rectangle
of symbols

Aside: what’s """ this """ about? Two things in one:

• Multiline strings: An alternate way to write strings that
include newlines.

• A docstring: The conventional way to write comments
that describe the purpose and behavior of a function.

def print_rectangle():
 """ Prints a 2x50 rectangle of a
 user-specified character """
 user_char = input("What character? ")
 for i in range(2):
 print(user_char * 50)

Function to print a rectangle
of symbols

def print_rectangle():
 """ Prints a 2x50 rectangle of a
 user-specified character """
 user_char = input("What character? ")
 for i in range(2):
 print(user_char * 50)

Multiline Strings and Docstrings:  
Demo

• Multiline strings: printing, assigning, etc.

• A string on a line by itself has no effect on the program.

• Docstrings in functions are like comments (but aren’t,
technically)

def print_rectangle():
 """ Prints a 2x50 rectangle of a
 user-specified character """
 user_char = input("What character? ")
 for i in range(2):
 print(user_char * 50)

Multiline Strings and
Docstrings: Demo

Docstrings

Docstrings
Docstrings are not required by the language.

Docstrings
Docstrings are not required by the language.

Docstrings are required by me.

Docstrings
Docstrings are not required by the language.

Docstrings are required by me.

• A docstring tells you what the function
does, but not how it does it.

Docstrings
Docstrings are not required by the language.

Docstrings are required by me.

• A docstring tells you what the function
does, but not how it does it.

• In other terms, it tells you what you need to
know to use the function, but not what the
function’s author needed to know to write it.

Docstrings: Example
The (actual) source code for turtle.forward:

 def forward(self, distance):
 """Move the turtle forward by the specified distance.

 Aliases: forward | fd

 Argument:
 distance -- a number (integer or float)

 Move the turtle forward by the specified distance, in the direction
 the turtle is headed.

 Example (for a Turtle instance named turtle):
 >>> turtle.position()
 (0.00, 0.00)
 >>> turtle.forward(25)
 >>> turtle.position()
 (25.00,0.00)
 >>> turtle.forward(-75)
 >>> turtle.position()
 (-50.00,0.00)
 """
 self._go(distance)

Docstring:

Implementation:

Docstrings: Example
The (actual) source code for turtle.forward:

 def forward(self, distance):
 """Move the turtle forward by the specified distance.

 Aliases: forward | fd

 Argument:
 distance -- a number (integer or float)

 Move the turtle forward by the specified distance, in the direction
 the turtle is headed.

 Example (for a Turtle instance named turtle):
 >>> turtle.position()
 (0.00, 0.00)
 >>> turtle.forward(25)
 >>> turtle.position()
 (25.00,0.00)
 >>> turtle.forward(-75)
 >>> turtle.position()
 (-50.00,0.00)
 """
 self._go(distance)

Docstring:

Implementation:

Docstrings: Example
Python documentation is generated from the
docstrings in the code!

Docstrings: Example
Python documentation is generated from the
docstrings in the code!

Worksheet Exercise 1

Exercise 1: Define a function named print_word, which prompts the user to
input a word, and also prompts the user to specify how many times that word
should be printed. The function should then print that word to the screen as many
times as the user has indicated. Invoke the function (hint: the function takes no
parameters (no arguments)).

print_word

Input(s): Return value:

Effects:

• none

prompts the user to input a word and a number of
repetitions

prints the word that many times

• none

def name():
 statements

Writing Functions: Syntax

def name(parameters):
 statements

Two important questions:

1. How does the function use the arguments

(inputs) passed to it?
2. How does the function return a value?

Let’s dodge these questions for a moment…

Writing Functions: Syntax

def name(parameters):
 statements

def keyword function name

1. How does the function use the arguments (inputs) passed to it?

Writing Functions: Syntax

def name(parameters):
 statements

def keyword function name

1. How does the function use the arguments (inputs) passed to it?

comma-separated
list of parameters:

variable names that
will refer to the input
arguments

inputs

Demo: Function to print a rectangle of
a symbol passed in as an argument.

print_rectangle

Input(s): Return value:

Effects:

• character to make a
rectangle out of

prints a 2x50 rectangle of the given
character to the screen

• none

Writing Functions: Syntax

def name(parameters):
 statements

def keyword function name

1. How does the function use the arguments (inputs) passed to it?

Writing Functions: Syntax

def name(parameters):
 statements

def keyword function name

1. How does the function use the arguments (inputs) passed to it?

comma-separated
list of parameters:

variable names that
will refer to the input
arguments

inputs

Writing Functions: Syntax

def name(parameters):
 statements

def keyword function name

1. How does the function use the arguments (inputs) passed to it?

comma-separated
list of parameters:

variable names that
will refer to the input
arguments

inputs

Inside the function, the parameters
act as local variables that refer to
the arguments passed into the
function.

Worksheet Exercise 2
Exercise 2: Write (define) a function that adds two
numbers and prints their sum. Then use that
function (invoke it) in a python program.

Parameters vs Arguments
Parameters: variable names that will refer to
the input arguments.

def add2(a, b):
 """ Print the sum of a and b """
 print(a + b)

add2(4, 10)

Arguments (we’ve seen these before):

values passed into a function.

Parameters (these are new):

variables that take on the value of the arguments

Parameters are Local Variables

• They only exist inside the function.

• Any other variables declared inside a function
are also local variables.

• This is an example of a broader concept called
scope: a variable’s scope is the set of
statements in which it is visible/usable.

• A local variable’s scope is limited to the
function inside which it’s defined.

Parameters and Local
Variables: Demo

• add2.py

Parameters and Local
Variables: Demo

• add2.py:

• parameters as local variables (inaccessible outside fn)

• other local variables

• variables getting passed in

• variables shadowing other variables

Demo: Function to draw a
square using a turtle

Demo: Function to draw a
square using a turtle

• the convenience of repetition:

• you can define a function once then call it as many
times as you want

• the power of customized repetition:

• you can define a function that takes arguments to
customize the task it performs: this is powerful!

• e.g.: one function to draw any size rectangle.

Writing Functions: Syntax

def name(parameters):
 statements

Two important questions:

2. How does the function return a value?

Exercise 3
Has a typo. Should say:

• Defines a function that takes a single
argument and prints the fourth power of the
input argument.

Returning values
New statement: the return statement

Syntax:

Behavior:

1. expression is evaluated

2. the function stops executing further statements

3. the value of expression is returned

return expression

Function Syntax: Summary

def name(parameters):
 statements

def keyword function name

comma-separated
list of parameters:

variable names that
will get assigned to
the arguments

An indented code block that
does any computation,
executes any effects, and
(optionally) returns a value

inputs

effects; return value

Returning values: Why?
• Next time:

• Using the result of one computation as the
input to another: function composition.

