T 7
%
\\\

\\&.\\\\ \\

v)
L,

7

OURE FLYING!

] . \\\ o)
\\\~ o w .\.,.\.\\
7.2 iy, - £~
\\s ’ \\\
W, M o
4 ‘y ’ ! 4 o ’ &. Y o
\. PrELTE » / C . .
/ ’ \\ y
7 ‘s f
Ly

.
s {

/ ».._‘_.,W\“.\

/

I JusT TYPED

/
... L ALSQO SAMPLED

EVERYTHING IN THE

import wﬁigmm‘ty
[
BUT I THINK THIS
|S THE PYTHON.

MEDICINE CABINET

FOR COMPARISON.-

THATS 1T?

R

introduction to functions

WHITEGFRCE?

COME JOIN US!
PROGRAMMING
IS FUN AGAIN!
IT'S A WHOLE
NEW WORLD
UP HERE!
BUT HOW ARE
YOU FLYING?

.

X

Lecture 12:

., continued;

I DUNNO.
DYNAMIC TYPI

.

/

T LEARNED IT LAST

NIGHT! EVERYTHING
l

HELLO WORLD IS JUST

print "Hello, world!"

1S SO SIMPLE !

for loops

Announcements

* In Wednesday'’s lecture: time for review and
questions.

e Exam material: range(functions)

e thatis, O up to but not including writing your own functions

Goals

Get practice using for loops and the range
function.

Know the syntax for defining your own
functions

Know how to define and use functions that
take no arguments and return no values

Know how to define use parameters to refer to
the input arguments of a function

The for statement: syntax

a variable name

for keyword

\

/

in keyword

/

for var name in sequence:

r codeblock

an Indented code block: one
or more statements to be
executed for each iteration

of the loop

\

a sequence: eithera 1ist
or a call to range

Sequences in Python: Lists

for color in ["red", "green', "blue']:

print (color) \\\

Thisisa 1ist: an ordered
collection of values.
Much more on these later.

This code prints:

red

green
blue

The for statement: behavior

for color in ["red", "green', "blue']:
print (color)

The loop body is executed once for each
value in the sequence (list).

This code prints: | gach iteration, the loop variable (color)

red takes on a different value from the
green sequence:
blue ("red", then "green", then "blue")

Notice: the loop variable gets updated automatically after each iteration!

Sequences in Python:
the range function

range(a): from 0 up to but not including a

for 1 in range(5): L
print(i, end=" 11) prlntS. O 1 2 3 4

range(a, b):from a up to but not including b

for 1 in range(2, 5): .
print (i, end=") prints: 2 3 4

range(a, b, c¢):sequence from a up to but not including b
counting in increments of ¢
for i in range(l, 8, 3):
print (1, end=* *)

prints: 1, 4, 7

More on range

for i1 in range(5):

prints: 0 1 2 3 4

print (1, end=" *)
for 1 in range(2, 5): .
print (i, end=* *) prints;: 2 3 4
for i in range(l, 8, 3): :
ge ") prints: 1, 4, 7

print (1, end=*

Exercise: How many elements are in range(n) ?

A]B
B

A. 0O
B. n-1
C. n
D. 10

C

More on range

for 1 in range(5):
print (i, end=" *)

prints: 0 1 2 3 4

for i1 in range(2, 5):

print (i, end=" “) prints: 2 3 4
for i in range(1l, 8, 3): . _
print (1, end=" *“) prlnts' 1 ’ 4 ’ 7

Exercise: How many elements are in range(a,b)?

A. a-b
NE .
C m C. b-a+1

D. b-a

More on range

for i1 in range(5):
print(i1, end=" *)

prints: 0 1 2 3 4

for 1 in range(2, 5):
print (i1, end=* *)

prints: 2 3 4

3):

for i in range(1l, 8,
print (1, end=* *)

prints: 1, 4, 7

Exercise: How many elements are in range(a,b,c)?

Suggestion: try working this out

Today’s Quiz

e 3 minutes

Today’s Quiz

e 3 minutes

 Working with a neighbor: do your answers
agree? (2 minutes)

A question about for loops

C

for value in [1, 16, 4]:
print (value)
value = value * 10

(for_quirk.py)

Functions, Revisited

e \We’ve been using functions since “Hello, World!”:

print("Hello, World!")

e Built-in functions so far:
print, input, type

e \We can import more functions:
import math
import turtle
math.sqgrt(4)
turtle.Turtle()

Functions, Revisited

What is a function, anyway?

It’s a chunk of code with a name.

e |t may take arguments as input

e |t may do something that has an effect
e |t may return a value

print("Hello world")

Input(s): Return value:
* (0 or more values e none
* (optional) sep and end

keywords prlnt

Effects: prints arguments to the screen,
with given separator and end

Functions, Revisited

What is a function, anyway?

It’s a chunk of code with a name.

e |t may take arguments as input

e |t may do something that has an effect
e |t may return a value

input (“Enter a number:”)

Input(s): Return value:
®* none, or e the input from the user
* astring to print as a

Srompt input

Effects: prompts for user input and
reads it from the keyboard

Functions, Revisited

What is a function, anyway?

It’s a chunk of code with a name.

e |t may take arguments as input

e |t may do something that has an effect
e |t may return a value

type(6/2)
Input(s): Return value:

e gvalue
— —

Effects: none

e the type of the value

Functions, Revisited

What is a function, anyway?

It’s a chunk of code with a name.

e |t may take arguments as input

e |t may do something that has an effect
e |t may return a value

math.sin(math.pi/2)
Input(s): Return value:

e] number ¢ the Sine Of the Value

— ARy —

Effects: none

Functions, Revisited

What is a function, anyway?

It’s a chunk of code with a name.

e |t may take arguments as input

e |t may do something that has an effect
e |t may return a value

Input(s): Return value:

e anumber * none
mmdl SCOtt . forward G

Effects: M°Ves the turtle forward by
" the given number of units

Functions, Revisited

What is a function, anyway?

e So far we’ve treated functions as “black boxes”,
code someone else wrote that does stuff for us.

e All we know are the inputs, effects, and return value.

e We don’t know how it’s done.

Input(s) — - — Return value

(Effects)

This Is a great
situation to be in!

A bunch of (complicated)
stuff is wrapped up in a nice,
easy-to-use package.

What if

You want a nice easy-to-use
function that does something
complicated, but nobody else
has written it for you...

Soon, you will have the power
to write your own functions.

Writing Functions: Syntax

def name(parameters):
statements

Two important questions:

1. How does the function use the arguments
(inputs) passed to it?

2. How does the function return a value?

Let’s dodge these questions for a moment...

Functions: the simplest kind

No arguments, no return value;

def name():
statements

Example:

def print hello():
print ("Hello, world!")

Demo: Function to print a
rectangle of # symbols

Input(s): Return value:

* none ¢ none

sl print rectangle s

Effects: prints a 2x50 rectangle of #s to the screen

Demo: Function to print a
rectangle of # symbols

e executing a def statement (function
definition) has no effect except defining that
function.

e after it is defined, a function can be used
whenever and wherever in the program

e modify to ask user what character to print

