
CSCI 141
Lecture 11:

More turtles, for loops and the range function

Special Announcements
from Merril Hunt-Paez

Special Announcements
from Merril Hunt-Paez

AWC Website: https://wwu-awc.github.io/

Contact AWC: awc.wwu@gmail.com

Contact Merril: huntpam@wwu.edu

https://wwu-awc.github.io/
mailto:awc.wwu@gmail.com
mailto:huntpam@wwu.edu

Happenings
Tuesday, 4/30 – ACM Hackathon Presentations & Recap
 – 5 pm in CF 316
Tuesday, 4/30 – AIA Presents: Intro to SQL and Databases
 – 6 pm in PH 228
Wednesday, 5/1 -- Peer Lecture Series: GDB Workshop
– 5 pm in CF 162

https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fevent%2Facm-hackathon-presentations&data=02%7C01%7Cwehrwes%40wwu.edu%7C599917cf084a4b272f7008d6c9d49d7f%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636918312395446132&sdata=GrVyNnks1rf7nl0R3kRNEbA0S3fm1PBrQTa1NmulIJY%3D&reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Faia-presents-intro-sql-and-databases&data=02%7C01%7Cwehrwes%40wwu.edu%7C599917cf084a4b272f7008d6c9d49d7f%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636918312395446132&sdata=ldRZ9XtrKeqnyGo9UFPQDKp5eeWUP8siQgqa7nGFGJo%3D&reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fpeer-lecture-series-gdb-workshop-2&data=02%7C01%7Cwehrwes%40wwu.edu%7C599917cf084a4b272f7008d6c9d49d7f%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636918312395456137&sdata=4hBap1Q2llwzR97BPGxf3zRYLKJFJHB9muBr1XawtqA%3D&reserved=0

Announcements

• Exam is next Friday

Announcements

• Exam is next Friday

• 50 minutes

Announcements

• Exam is next Friday

• 50 minutes

• Closed-book; no notes

Announcements

• Exam is next Friday

• 50 minutes

• Closed-book; no notes

• No calculators (there won’t be any hard arithmetic)

Announcements

Sample Exam Questions
• Submit one sample exam question, along

with its solution to Canvas by 1pm Monday

• Worth 1% extra credit on midterm exam.

• I will post sample questions and solutions by Monday
night.

• I will choose one question to include on the exam.

• Canvas assignment with more detailed instructions will go
up today.

Study Tips
Reading is not enough: solve problems.

• Goals slides: can you do these things? Try and see.

• Terminology: be able to discuss the meaning of all words that appear in
blue in the slides

• ABCD questions: solve it before looking at the answer (if provided)

• Demo code: solve the same problem without without looking at my code.

• Homework questions: understand what you got wrong and why.
Understand what you got right and why.

• Exercises from the eBook

Goals
• Know how to use import statements to get access to

modules containing functions that other people have written.

• Understand how to create a Turtle object and call its
methods to move it around the screen and draw simple
shapes.

• Methods: forward, left, right, penup, pendown

• Know the syntax and behavior of the for statement (for
loop)

• Know how to use the range function in the header of a for
loop.

Last time: Modules
The Python Standard Library is a collection of
modules containing many more functions.

To use functions in a module, you need to import
the module using an import statement:

By convention, we put all import statements at the
top of programs.

import module

Last time: Modules
The Python Standard Library is a collection of
modules containing many more functions.

To use functions in a module, you need to import
the module using an import statement:

By convention, we put all import statements at the
top of programs.

(replace the in this font with the specific module name)

import module

Last time: Modules
Once you’ve imported a module:

you can call functions in that module using the
following syntax:

random.randint(0,10)

import random

random.randint(a, b)
Return a random integer N such that a <= N <= b

Last time: Modules
Once you’ve imported a module:

you can call functions in that module using the
following syntax:

Module name

random.randint(0,10)

import random

random.randint(a, b)
Return a random integer N such that a <= N <= b

Last time: Modules
Once you’ve imported a module:

you can call functions in that module using the
following syntax:

DotModule name

random.randint(0,10)

import random

random.randint(a, b)
Return a random integer N such that a <= N <= b

Last time: Modules
Once you’ve imported a module:

you can call functions in that module using the
following syntax:

DotModule name Function call (the usual syntax)

random.randint(0,10)

import random

random.randint(a, b)
Return a random integer N such that a <= N <= b

More on import statements
Import the entire module:

Import a specific function:

• Don’t need module name dot notation

• Other math methods are not accessible:

• math.sqrt(4) will throw an error

• math.sin(0) will throw an error

import random
num = random.randint(1, 10)

from math import sin
sin0 = sin(0)

math module
• The math module has useful stuff!

• You can read about it in the documentation.

• logarithms, trigonometry, …

• Modules can also contain values:

https://docs.python.org/3/library/math.html

import statements
Which of the following correctly computes the
are of a circle with radius 4?

import math
area = math.pi * 4**2

from math import pi
area = (pi * 4)**2

import pi
area = pi * 4**2

from math import pi
area = math.pi * 4**2

A

B

C

D

import statements
Which of the following correctly computes the
are of a circle with radius 4?

import math
area = math.pi * 4**2

from math import pi
area = (pi * 4)**2

import pi
area = pi * 4**2

from math import pi
area = math.pi * 4**2

A

B

C

D

Only pi is available:

math is not imported.

This works!

Formula is wrong!

There is no pi module.

turtle module
Python has Turtles!

import turtle
scott = turtle.Turtle()

turtle module
Python has Turtles!

import turtle
scott = turtle.Turtle()

Basic turtle methods
• forward: moves the turtle forward

• left/right: turns the turtle

• penup/pendown: turns drawing on and off

Creating and Using Objects
import turtle
scott = turtle.Turtle()

Creating and Using Objects

The Turtle() function starts with a capital letter. 
By convention this indicates that it is a special kind of function called a
constructor that creates (and returns) new objects of type Turtle.

import turtle
scott = turtle.Turtle()

https://docs.python.org/3.3/library/turtle.html?highlight=turtle
https://docs.python.org/3.3/library/turtle.html?highlight=turtle

Creating and Using Objects

The Turtle() function starts with a capital letter. 
By convention this indicates that it is a special kind of function called a
constructor that creates (and returns) new objects of type Turtle.

The Turtle() function returns a Turtle object, and the variable scott now
refers to it.

import turtle
scott = turtle.Turtle()

https://docs.python.org/3.3/library/turtle.html?highlight=turtle
https://docs.python.org/3.3/library/turtle.html?highlight=turtle

Creating and Using Objects

The Turtle() function starts with a capital letter. 
By convention this indicates that it is a special kind of function called a
constructor that creates (and returns) new objects of type Turtle.

The Turtle() function returns a Turtle object, and the variable scott now
refers to it.

Objects can have functions associated with them, accessed via the dot
notation, e.g.: 
 turtle.forward(10) # moves the turtle forward 10 units  
 turtle.left(90) # turns the turtle left 90 degrees

import turtle
scott = turtle.Turtle()

https://docs.python.org/3.3/library/turtle.html?highlight=turtle
https://docs.python.org/3.3/library/turtle.html?highlight=turtle

Creating and Using Objects

The Turtle() function starts with a capital letter. 
By convention this indicates that it is a special kind of function called a
constructor that creates (and returns) new objects of type Turtle.

The Turtle() function returns a Turtle object, and the variable scott now
refers to it.

Objects can have functions associated with them, accessed via the dot
notation, e.g.: 
 turtle.forward(10) # moves the turtle forward 10 units  
 turtle.left(90) # turns the turtle left 90 degrees

import turtle
scott = turtle.Turtle()

functions that belong to an object are called its methods

https://docs.python.org/3.3/library/turtle.html?highlight=turtle
https://docs.python.org/3.3/library/turtle.html?highlight=turtle

Creating and Using Objects

The Turtle() function starts with a capital letter. 
By convention this indicates that it is a special kind of function called a
constructor that creates (and returns) new objects of type Turtle.

The Turtle() function returns a Turtle object, and the variable scott now
refers to it.

Objects can have functions associated with them, accessed via the dot
notation, e.g.: 
 turtle.forward(10) # moves the turtle forward 10 units  
 turtle.left(90) # turns the turtle left 90 degrees

What methods do Turtles have? Lots! 
Check the docs: https://docs.python.org/3.3/library/turtle.html?
highlight=turtle

import turtle
scott = turtle.Turtle()

functions that belong to an object are called its methods

https://docs.python.org/3.3/library/turtle.html?highlight=turtle
https://docs.python.org/3.3/library/turtle.html?highlight=turtle

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:
1. Move forward 100

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:
1. Move forward 100
2. Turn left 90 degrees

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:
1. Move forward 100
2. Turn left 90 degrees
3. Move forward 100

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:
1. Move forward 100
2. Turn left 90 degrees
3. Move forward 100
4. Turn left 90 degrees

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:
1. Move forward 100
2. Turn left 90 degrees
3. Move forward 100
4. Turn left 90 degrees
5. Move forward 100

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:
1. Move forward 100
2. Turn left 90 degrees
3. Move forward 100
4. Turn left 90 degrees
5. Move forward 100
6. Turn left 90 degrees

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:
1. Move forward 100
2. Turn left 90 degrees
3. Move forward 100
4. Turn left 90 degrees
5. Move forward 100
6. Turn left 90 degrees
7. Move forward 100

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:
1. Move forward 100
2. Turn left 90 degrees
3. Move forward 100
4. Turn left 90 degrees
5. Move forward 100
6. Turn left 90 degrees
7. Move forward 100
8. (Turn left 90 degrees)

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:
1. Move forward 100
2. Turn left 90 degrees
3. Move forward 100
4. Turn left 90 degrees
5. Move forward 100
6. Turn left 90 degrees
7. Move forward 100
8. (Turn left 90 degrees)

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:
1. Move forward 100
2. Turn left 90 degrees
3. Move forward 100
4. Turn left 90 degrees
5. Move forward 100
6. Turn left 90 degrees
7. Move forward 100
8. (Turn left 90 degrees)

Can we do better?

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:

Repeat 4 times:

1. move forward 100

2. turn left 90

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:

Repeat 4 times:

1. move forward 100

2. turn left 90

Demo

Demo
• turtle_square.py: Write a loop-based

program that makes a turtle and draws a
square with it.

Hot take: for some tasks, 
while loops are annoying.

Hot take: for some tasks, 
while loops are annoying.

• Often, you want: “Do someThing() 10 times”

Hot take: for some tasks, 
while loops are annoying.

• Often, you want: “Do someThing() 10 times”

• With a while loop you need to: 
 
 

Hot take: for some tasks, 
while loops are annoying.

• Often, you want: “Do someThing() 10 times”

• With a while loop you need to: 
 
 

i = 0
while i < 10:
 someThing()
 i += 1

Hot take: for some tasks, 
while loops are annoying.

• Often, you want: “Do someThing() 10 times”

• With a while loop you need to: 
 
 

i = 0
while i < 10:
 someThing()
 i += 1

I don’t even care about i,

it’s just bookkeeping!

Hot take: for some tasks, 
while loops are annoying.

• Often, you want: “Do someThing() 10 times”

• With a while loop you need to: 
 
 

• Wouldn’t it be great if we could: 

i = 0
while i < 10:
 someThing()
 i += 1

I don’t even care about i,

it’s just bookkeeping!

Hot take: for some tasks, 
while loops are annoying.

• Often, you want: “Do someThing() 10 times”

• With a while loop you need to: 
 
 

• Wouldn’t it be great if we could: 

i = 0
while i < 10:
 someThing()
 i += 1

do 10 times:
 someThing()

I don’t even care about i,

it’s just bookkeeping!

Hot take: for some tasks, 
while loops are annoying.

• Often, you want: “Do someThing() 10 times”

• With a while loop you need to: 
 
 

• Wouldn’t it be great if we could: 

i = 0
while i < 10:
 someThing()
 i += 1

do 10 times:
 someThing()

We (almost) can! Using for loops.

I don’t even care about i,

it’s just bookkeeping!

The for statement: syntax

for var_name in sequence:
 codeblock

The for statement: syntax

for var_name in sequence:
 codeblock

for keyword

The for statement: syntax

for var_name in sequence:
 codeblock

a variable name

for keyword

The for statement: syntax

for var_name in sequence:
 codeblock

a variable name

for keyword in keyword

The for statement: syntax

for var_name in sequence:
 codeblock

a variable name

for keyword in keyword colon

The for statement: syntax

for var_name in sequence:
 codeblock

a variable name

an indented code block: one
or more statements to be
executed for each iteration
of the loop

for keyword in keyword colon

The for statement: syntax

for var_name in sequence:
 codeblock

a variable name

an indented code block: one
or more statements to be
executed for each iteration
of the loop

for keyword

a sequence

in keyword colon

The for statement: syntax

for var_name in sequence:
 codeblock

a variable name

an indented code block: one
or more statements to be
executed for each iteration
of the loop

for keyword

a sequence
????

in keyword colon

Sequences in Python: Lists

for color in ["red", "green", "blue"]:
 print(color)

This code prints:
red
green
blue

Sequences in Python: Lists

for color in ["red", "green", "blue"]:
 print(color)

This is a list: an ordered
collection of values.

Much more on these later.

This code prints:
red
green
blue

The for statement: behavior

for color in ["red", "green", "blue"]:
 print(color)

This code prints:
red
green
blue

The for statement: behavior

for color in ["red", "green", "blue"]:
 print(color)

This code prints:
red
green
blue

The loop body is executed once for each
value in the sequence (list).

The for statement: behavior

for color in ["red", "green", "blue"]:
 print(color)

This code prints:
red
green
blue

The loop body is executed once for each
value in the sequence (list).

In each iteration, the loop variable

The for statement: behavior

for color in ["red", "green", "blue"]:
 print(color)

This code prints:
red
green
blue

The loop body is executed once for each
value in the sequence (list).

In each iteration, the loop variable (color)

The for statement: behavior

for color in ["red", "green", "blue"]:
 print(color)

This code prints:
red
green
blue

The loop body is executed once for each
value in the sequence (list).

In each iteration, the loop variable
takes on a different value from the
sequence:

(color)

The for statement: behavior

for color in ["red", "green", "blue"]:
 print(color)

This code prints:
red
green
blue

The loop body is executed once for each
value in the sequence (list).

In each iteration, the loop variable
takes on a different value from the
sequence:

(color)

("red", then "green", then "blue")

The for statement: behavior

for color in ["red", "green", "blue"]:
 print(color)

This code prints:
red
green
blue

The loop body is executed once for each
value in the sequence (list).

In each iteration, the loop variable
takes on a different value from the
sequence:

(color)

("red", then "green", then "blue")

Notice: the loop variable gets updated automatically after each iteration!

Sequences in Python: Ranges
Lists are great if you have a list of things, but what about:

Sequences in Python: Ranges

“Do someThing() 10 times”?

Lists are great if you have a list of things, but what about:

Sequences in Python: Ranges

“Do someThing() 10 times”? ugh.

Lists are great if you have a list of things, but what about:

Sequences in Python: Ranges

for i in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]:
 someThing()

“Do someThing() 10 times”? ugh.

Lists are great if you have a list of things, but what about:

Sequences in Python: Ranges

for i in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]:
 someThing()

“Do someThing() 10 times”? ugh.

Lists are great if you have a list of things, but what about:

New function to the rescue: range
makes it easy to generate lists like this.

Sequences in Python: Ranges

for i in range(5):
 print(i)

This code prints:
0
1
2
3
4

Sequences in Python: Ranges

for i in range(5):
 print(i)

The range function returns
a sequence of integers.

This code prints:
0
1
2
3
4

Sequences in Python: Ranges

for i in range(5):
 print(i)

The range function returns
a sequence of integers.

This code prints:
0
1
2
3
4

Not technically a list, but acts like one: more on this later

Sequences in Python:
the range function

Sequences in Python:
the range function

for i in range(5):
 print(i, end=“ “) prints: 0 1 2 3 4

Sequences in Python:
the range function

for i in range(5):
 print(i, end=“ “) prints: 0 1 2 3 4

range(a): from 0 up to but not including a

Sequences in Python:
the range function

for i in range(5):
 print(i, end=“ “) prints: 0 1 2 3 4

for i in range(2, 5):
 print(i, end=“ “) prints: 2 3 4

range(a): from 0 up to but not including a

Sequences in Python:
the range function

for i in range(5):
 print(i, end=“ “) prints: 0 1 2 3 4

for i in range(2, 5):
 print(i, end=“ “) prints: 2 3 4

range(a): from 0 up to but not including a

range(a, b): from a up to but not including b

Sequences in Python:
the range function

for i in range(5):
 print(i, end=“ “) prints: 0 1 2 3 4

for i in range(2, 5):
 print(i, end=“ “) prints: 2 3 4

for i in range(1, 8, 3):
 print(i, end=“ “) prints: 1, 4, 7

range(a): from 0 up to but not including a

range(a, b): from a up to but not including b

Sequences in Python:
the range function

for i in range(5):
 print(i, end=“ “) prints: 0 1 2 3 4

for i in range(2, 5):
 print(i, end=“ “) prints: 2 3 4

for i in range(1, 8, 3):
 print(i, end=“ “) prints: 1, 4, 7

range(a): from 0 up to but not including a

range(a, b, c): sequence from a up to but not including b
 counting in increments of c

range(a, b): from a up to but not including b

The range function returns a sequence of integers.

It’s not technically a list: print(range(4)) does not print

[1, 2, 3]

To turn the range into a list (e.g., to print it), we can use
the list function:

Converting ranges to lists

list(range(2, 5)) => [2, 3, 4]

Range function: Demo

Range function: Demo
• range_demo.py

Back to for loops…

for var_name in sequence:
 codeblock

a variable name

an indented code block: one
or more statements to be
executed for each iteration
of the loop

for keyword in keyword

????

Back to for loops…

for var_name in sequence:
 codeblock

a variable name

an indented code block: one
or more statements to be
executed for each iteration
of the loop

for keyword

a sequence: either a list

or a call to range

in keyword

Today’s Quiz
• 3 minutes

Today’s Quiz
• 3 minutes

• Working with a neighbor: do your answers
agree? (2 minutes)

Demo
• turtle_square.py, revisited: let’s rewrite this

with a for loop.

Generalized Squares, AKA
Equilateral Polygons

Exercise 4: Write code that makes the Turtle
object scott draw an n-sided polygon,
where n and the length of each side are
given by the user.

import turtle

scott = turtle.Turtle()
for i in range(4):
 scott.forward(100)
 scott.left(90)

Hint: the total amount the turtle needs to turn is 360 degrees.

Code from turtle_square:

Additional Suggested
Practice Problems

1. Make a Turtle do a random walk: write a
program that repeats the following 100
times:

• Move the turtle a random distance forward.

• Turn the turtle a random amount.

2. Re-write the dice exercise from last time
using for loops (it’s simpler this way!)

