
CSCI 141
Lecture 10:

Modules, random, objects, Turtles

• A3 is out! Due next Wednesday.

• Start early so you have time to study for…

• The midterm exam is a week from Friday!

• Covers material through Monday.

Announcements

Goals
• Be able to write while loops to perform repetitive

tasks, including nested while loops.

• Know how to use import statements to get
access to modules containing functions that
other people have written.

• Know how to use the random module’s randrange function.

• Understand how to create a Turtle object and
call its methods on it to move it around the
screen and draw shapes.

Last time:
the while statement

while [condition]:
 [indented code block]

a boolean expression (the condition)
a colon :

an indented code block: one
or more statements to be
executed while the boolean
expression evaluates to True

Not so different from an if statement:

while keyword

The while statement:  
A Working Example

print account balance after each
of five years:
balance = 100.0 # starting balance
year = 1
while year <= 5:
 balance = balance + (0.02 * balance)
 print(balance)
 year = year + 1

Terminology notes:

• the line with while and the condition is the loop header

• the code block is the loop body

• the entire construct (header and body) is a while statement

• usually people call them while loops instead

Warmup
Exercise 1: Write a while loop to
repeatedly prompt the user for a
password until they get it correct.

Pseudocode:
1. Ask user for password

2. If correct, go to step 3, otherwise start back at step 1

3. Print a message saying “You’re in!”

Nesting while loops

Why not?
i = 1
while i < 4:
 j = 1

 print()
 i += 1

just another
statement!

What does this program print?
1 2 3 4 5 6
2 4 6
3 6

1 2 3 4 5
2 4
3

2 4 6
2 4
2

1 2 4 6 2 4 3

A:

B:

D:

C:
while i * j < 6:
 print(i * j, end=" ")
 j += 1

Nesting while loops
Exercise 2:

Print out all possible rolls of
two six-sided dice.

1 1

1 2

1 3

1 4

1 5

1 6

2 1

2 2

2 3

2 4

…

6 4

6 5

6 6

Program output:

(and so on)

Nesting while loops
Exercise 2:

Print out all possible rolls of
two six-sided dice.

1 1

1 2

1 3

1 4

1 5

1 6

2 1

2 2

2 3

2 4

…

6 4

6 5

6 6

Program output:

(and so on)

Break down the problem:

• print 1 followed by each of 1 to 6

• print 2 followed by each of 1 to 6

• and so on

Repetitive task

Repetitive task

Questions?

Other Peoples’ Code
We’ve already used code other people wrote by
calling built-in Python functions:

• print, input, type

Built-in functions are special because they’re
always available.

Many other functions exist in the Python
Standard Library, which is a collection of
modules containing many more functions.

Other Peoples’ Code
An example: I want to generate a random
integer between 0 and 10.

import random

I don’t know how to do this.
Someone who does has written some functions for me.

They live in the random module:

I could go look at the source code…

Other Peoples’ Code
An example: I want to generate a random
integer between 0 and 10.

import random

I don’t know how to do this.
Someone who does has written some functions for me.

They live in the random module:

I could go look at the source code…

…
…

Other Peoples’ Code
An example: I want to generate a random
integer between 0 and 10.

import random

I don’t know how to do this.
Someone who does has written some functions for me.

They live in the random module:

I could go look at the source code… but I’d rather just use
their functions without knowing how they work.

num = random.randint(0,10)

Other Peoples’ Code

Two questions:

1. What is this syntax about?

2. How do I know what the function does?

import random
num = random.randint(0,10)

Using Modules: Syntax
The Python Standard Library is a collection of
modules containing many more functions.

To use functions in a module, you need to import
the module using an import statement:

By convention, we put all import statements at the
top of programs.

(replace the in this font with the specific module name)

import module

Using Modules: Syntax
Once you’ve imported a module:

you can call functions in that module using the
following syntax:

DotModule name Function call (the usual syntax)

random.randint(0,10)

import random

Other Peoples’ Code

Two questions:

1. What is this syntax about?

2. How do I know what the function does?

import random
num = random.randint(0,10)

Other Peoples’ Code

Two questions:

1. What is this syntax about?

2. How do I know what the function does?
Read about it in the Python documentation.

My approach, in practice:

1. Google “python 3 <whatever>”

2. Make sure the URL is from python.org and has version python 3.x

example

import random
num = random.randint(0,10)

http://python.org
https://www.google.com/search?q=python+3+random

You try it
Exercise 3: write a program that generates
and prints random integers between 1 and
10 (inclusive) until one of the random
numbers exceeds 8.

Documentation says:

random.randint(a, b)
Return a random integer N such that a <= N <= b

More on import statements

• Import the entire module:

• Import a specific function:

• Don’t need module name dot notation

• Other random methods are not accessible

import random
num = random.randint(1, 10)

from math import sin
sin0 = sin(0)

math module
• The math module has useful stuff!

• You can read about it in the documentation.

• logarithms, trigonometry, …

• Modules can also contain values:

https://docs.python.org/3/library/math.html

turtle module
Python has Turtles!

import turtle

turtle module
Python has Turtles!

import turtle
scott = turtle.Turtle()

What does this do?

Let’s play with it.

Demo: basic turtle usage

Demo: basic turtle usage
• forward

• turn

• pendown/down

• penup/up

Creating and Using Objects

The Turtle() function starts with a capital letter. 
By convention this indicates that it is a special kind of function called a
constructor that creates (and returns) new objects of type Turtle.

The Turtle() function returns a Turtle object, and the variable scott now
refers to it.

Objects can have functions associated with them, accessed via the dot
notation, e.g.: 
 turtle.forward(10) # moves the turtle forward 10 units  
 turtle.left(90) # turns the turtle left 90 degrees

What methods do Turtles have? Lots! 
Check the docs: https://docs.python.org/3.3/library/turtle.html?
highlight=turtle

import turtle
scott = turtle.Turtle()

functions that belong to an object are called its methods

https://docs.python.org/3.3/library/turtle.html?highlight=turtle
https://docs.python.org/3.3/library/turtle.html?highlight=turtle

