CSCI 141

Lecture 10:
Modules, random, objects, Turtles

Announcements

A3 is out! Due next Wednesday.

e Start early so you have time to study for...

e The midterm exam is a week from Friday!

 Covers material through Monday.

Goals

- Be able to write while loops to perform repetitive
tasks, including nested while loops.

* Know how to use import statements to get
access to modules containing functions that
other people have written.

« Know how to use the random module’s randrange function.

» Understand how to create a Turtle object and
call its methods on it to move it around the
screen and draw shapes.

Last time:

the while statement

Not so different from an i1if statement:

while keyword

a boolean expression (the condition)

\

/ / a colon :

while [condition]:

///,+[indented code block]

an indented code block: one
or more statements to be

executed while the boolean
expression evaluates to True

The while statement:
A Working Example

print account balance after each

of five years:

balance = 100.0 # starting balance

year = 1

while year <= 5:
balance = balance + (0.02 * balance)
print (balance)
year = year + 1

Terminology notes:
e the line with while and the condition is the loop header
the code block is the loop body

the entire construct (header and body) is a while statement
usually people call them while loops instead

Warmup

Exercise 1: Write a while loop to
repeatedly prompt the user for a
password until they get it correct.

Pseudocode:
1. Ask user for password
2. If correct, go to step 3, otherwise start back at step 1

3. Print a message saying “You’'re in!”

C

;=1 statement!

while 1 < 4: ////
J = 1

while 1 * j < 6:

3 += 1
print ()
1 += 1

Nesting while loops

E What does this program print?
. A:
m just another

print(i * j, end=" ") |C:

1 2 4 5 6

2 4

3 6

1 2 4 5

2 4

3

1 2 6 2 4 3
2

2

2

Nesting while loops

M Program output:

11

Exercise 2: (2o . 12

‘ \ 222 113
Print out all possible rolls of 1 4

two six-sided dice. 15

16

2 1

(and so on)

Nesting while loops

two six-sided dice.

" Program output:

Repetitive task

Break down the problem: /

e print 1 followed by each of 1 to 6
e print 2 followed by each of 1t0 6

e and so on
\

Repetitive task

(and so on)

Questions?

Other Peoples’ Code

We’ve already used code other people wrote by
calling built-in Python functions:

® print, 1nput, type

Built-in functions are special because they’re
always available.

Many other functions exist in the Python
Standard Library, which is a collection of
modules containing many more functions.

Other Peoples’ Code

An example: | want to generate a random
integer between 0 and 10.

| don’t know how to do this.

Someone who does has written some functions for me.
They live in the random module:

1mport random

| could go look at the source code...

Ar

Nt

| d

S(
Tt

| ¢

##

integer methods

def randrange(self, start, stop=None, step=1, _int=int):
"""Choose a random item from range(start, stop[, stepl).

This fixes the problem with randint() which includes the
endpoint; in Python this is usually not what you want.

This code is a bit messy to make it fast for the
common case while still doing adequate error checking.
istart = _int(start)
if istart != start:

raise ValueError("non-integer arg 1 for randrange()")
if stop is None:

if istart > 0:

return self._randbelow(istart)
raise ValueError("empty range for randrange()")

stop argument supplied.
istop = _int(stop)
if istop != stop:
raise ValueError("non-integer stop for randrange()")
width = istop - istart
if step == 1 and width > 0:
return istart + self._randbelow(width)
if step == 1:
raise ValueError("empty range for randrange() (%d, %d, %d)" % (istart, istop, width))

Non-unit step argument supplied.
istep = _int(step)
if istep != step:

raica \alnaFrrar{"nanaintonar ctoan far randrannafl ')
| |

Other Peoples’ Code

An example: | want to generate a random
integer between 0 and 10.

| don’t know how to do this.

Someone who does has written some functions for me.
They live in the random module:

import random

| could go look at the source code... but I'd rather just use
their functions without knowing how they work.

num = random.randint(0,10)

Other Peoples’ Code

import random

num = random.randint(0,10)

Two questions:

1. What is this syntax about?

2. How do | know what the function does?

Using Modules: Syntax

The Python Standard Library is a collection of
modules containing many more functions.

To use functions in a module, you need to import
the module using an import statement:

import module

(replace the in this font with the specific module name)

By convention, we put all import statements at the
top of programs.

Using Modules: Syntax

Once you’ve imported a module:

import random

you can call functions in that module using the
following syntax:

random.randint(0,10)

/ T "\

Module name Dot Function call (the usual syntax)

Other Peoples’ Code

import random

num = random.randint(0,10)

Two questions:
1. What is this syntax about?

2. How do | know what the function does?

Other Peoples’ Code

import random
num = random.randint(0,10)

Two questions:
1. What is this syntax about?

2. How do | know what the function does?

Read about it in the Python documentation.

My approach, in practice.

1. Google “python 3 <whatever>”

2. Make sure the URL is from python.org and has version python 3.x

example

http://python.org
https://www.google.com/search?q=python+3+random

You try it

Exercise 3: write a program that generates
and prints random integers between 1 and
10 (inclusive) until one of the random
numbers exceeds 8.

Documentation says:

random.randint(a, b)
Return a random integer N suchthata <= N <= b

More on import statements

* Import the entire module:

import random
num = random.randint(l, 10)

e Import a specific function:

from math import sin
sin0 = sin(0)

e Don’t need module name dot notation
e (Other random methods are not accessible

math module

e The math module has useful stuff!

e You can read about it in the documentation.

e [ogarithms, trigonometry, ...

e Modules can also contain values:

>>> 1mport math
>>> math.pil
3.14[1592653589793

>>> math.e
2.718281828459045

>>>

https://docs.python.org/3/library/math.html

turtle module

Python has Turtles!
import turtle

turtle module

Python has Turtles!

import turtle
scott = turtle.Turtle()

What does this do?
Let’s play with it.

Demo: basic turtle usage

Demo: basic turtle usage

o forward
e turn
e pendown/down

e penup/up

Creating and Using Objects

import turtle
scott = turtle.Turtle()

The Turtle () function starts with a capital letter.

By convention this indicates that it is a special kind of function called a
constructor that creates (and returns) new objects of type Turtle.

The Turtle() function returns a Turtle object, and the variable scott now
refers to it.
functions that belong to an object are called its methods

Objects can have functions associated with them, accessed via the dot
notation, e.g.:
turtle.forward(10) # moves the turtle forward 10 units
turtle.left(90) # turns the turtle left 90 degrees

What methods do Turtles have? Lots!

Check the docs: https://docs.python.org/3.3/library/turtle.ntml?
highlight=turtle

https://docs.python.org/3.3/library/turtle.html?highlight=turtle
https://docs.python.org/3.3/library/turtle.html?highlight=turtle

