M L

g

J R v v ol ol (5 (81 87 8 o oo oy

W v T ot () ol ot (900 ot (17 (5 oy

,/ _
R e e B R e e e T AT R A4 174 7/
L, e, 14“(»1. D8~

-~h ~ o~ —)

SRR - va ..04;1

% 1&0‘..

- - - ./100 -
o -~ . e s O
“a o W

T

0D = @14&.4& —
a
D R et N

RS E D RRE (XN

~)
3 T AN

CSCI 141

Lecture 5;
More on print and input

Operator Precedence

Binary representation

Announcements

e Academic Honesty and googling for answers:

 Searching the internet to learn about Python features, syntax,
etc. does not violate academic honesty.

* Programmers do this all the time.
* You learned how to solve a problem!

* Searching the internet for a solution to a problem I’'ve given
you and copy/pasting code does violate academic honesty.

* You didn’t learn how to solve the problem.

Goals

Know how to use keyword arguments such as the sep and end
keyword arguments to the print function.

Know how to save a function’s return value to a variable.
Understand how the + operator behaves with string operands.

Know how to apply operator precedence rules to determine the
order in which pieces of an expression are evaluated.

Know how to convert a decimal number to binary and vice
versa.

Understand the basic idea behind how strings and floating-point
numbers are represented on computers.

What have we covered so far?

e Data is (somehow) stored in memory.

more on this today: representing numbers in binary!

e Each piece of data has a type.

so far we’ve seen: int, float, str

e Variables can assign names to pieces of

data- the assignment operator stores a value in a variable, as in:
my var = “Hello, world!”

e Operators can do things to the data (these
operations are performed by the CPU).

so far: assignment operator (=)
arithmetic operators: (+,-,*,/,**,//, %)

What have we covered so far?

e A function can take inputs (arguments) and
can produce an output (return value)

so far: input, print, type, int, float, str

e Statements are instructions that are
executed

so far: assignment statements, such asmy var = 64 + 8

e Expressions are like phrases that can be

evaluated to determine what value they
represent.

so far:

e functions that return values, like int (42.8)
e arithmetic expressions, like (4 + 2) / 2

 and combinations of other expressions, like (2**3) // int(user input)

Today’s Quiz

e Please write your name at the top:
Lasthname, Firsthame

e 4 minutes

Today’s Quiz

e Please write your name at the top:
Lasthname, Firsthame
e 4 minutes

e Working with a neighbor: do your answers
agree? (2 minutes)

Function Calls: Getting Fancier

Syntax for a function call:

print("I am", 32, "years old")
/‘ \ / \
/ Open paren \ Close paren

Function name Comma-separated list of arguments

Function Calls: Getting Fancier

Keyword arguments provide a way to pass optional arguments:

print("I am", 31, "years old", sep="")

/

sep keyword argument

The print function can take two keyword arguments:

e sep specifies what goes between the printed arguments
(defaults to sep=* *“)

e end specifies what goes after the last printed argument
(defaults to end=*\n", the character representing a newline)

input’s Return Value

The input function waits for the user to enter
input on the keyboard:

input("Enter some input: ")

What if we want to store the input? Use a variable:
user text = input("Enter some input: ")

input’s return value is whatever text the user entered

Important: input’s return value is always returns
type str

A Note on Operators

e Operators only work if their operands have
the correct types.

e Some operators can work on more than one
type or combination of types:

Not too surprising: Maybe a little surprising:
int + int => 1int str + str => str
int + float => float str * int => str

float + int => float
float + float => float

Demo

Demo

e print with sep keyword arg
e print with end keyword arg
e save Input and convert to an int

e operator behaviors:
4 + 5 => 9
4.0 5 => 9.0
4.0 5.0 => 9.0
" “b" => “ab”
1l => error
i1 {4 => llab"
16 => "“"aaaaaaaaaaaaaaaa”

44

~
w
I
-

* + + + + +

I~
w,

O O o o

)
-

Order of Operations

We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules?

What if we took the parentheses out:
result = 5 % (3 ** (6 // 4))

result =5 % 3 **x 6 // 4

precedence

Order of Operations

We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Parentheses
Exponentiation
Multiplication and Division

Addition and Subtraction

precedence

Order of Operations

We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Parentheses Example:

Exponentiation 10 * 6 **» 2 /5 // 11 - 4
Multiplication and Division

Addition and Subtraction

precedence

Order of Operations

We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Parentheses Example:

Exponentiation 10 * 6 ** 2 /5 // 11 - 4
Multiplication and Division (left-to-right)

Addition and Subtraction (left-to-right)

Questions?

Representing Numbers

on Computers

e What happens “under the
hood” when we execute:

result = 5

* The value 5 gets stored
somewnhere in main memory
(and we somehow keep track of
where it’s stored).

Memory

Representing Numbers

on Computers

e What happens “under the
hood” when we execute:

result = 5

* The value 5 gets stored
somewnhere in main memory
(and we somehow keep track of
where it’s stored).

Memory

Representing Numbers
on Computers

How are numbers stored in memory?

]
|
(W}

Memory is made of specialized electric circuits that provide
cells that can “store” information by being in one of two
states: on or off.

I]
,
|l

Representing Numbers
on Computers

How are numbers stored in memory?

]

=

]

Il

We impose mathematical meaning on these states:

“Oﬁ” — O
“On” — 1

Representing Numbers
on Computers

How are numbers stored in memory?

i 0 1 1 1 0

We impose mathematical meaning on these states:
“Oﬁ!! — O
“On” — 1

Representing Numbers
on Computers

How are numbers stored in memory?

Each 1/0 memory location is called a bit.

Representing Numbers
on Computers

i 0 1 1 1 O
/

Each 0/1 memory location stores one bit.

8 bits is called a byte.

Metric prefixes are used to
represent numbers of bytes,
e.g. kilo, mega, giga, etc.

In computer science, kilo is
not actually 1000, it’s 1024.

Representing Numbers
on Computers

i 0 1 1 1 O
/

Each 0/1 memory location stores one bit.

8 bits is called a byte.

| | In computer science, the
Metric prefixes are used to orefixes have slightly

represent numbers ot bytes, jitferent meaning: kilo is not
e.g. kilo, mega, giga, etc. actually 1000, it’s 1024.

Representing Numbers
on Computers

i 0 1 1 1 O
/

Each 0/1 memory location stores one bit.

8 bits is called a byte.

Usual Sl prefixes: Base 2 prefixes:

e kilo=103=1000 kilobyte = 210 = 1,024 bytes

* mega=106=1 million * megabyte = 220 = 1,048,576 bytes

e giga = 10° =1 billion * gigabyte = 230 =1,073,741,824 bytes

e tera=1072=1 trillion * terabyte =240 =1,099,511,627,776 bytes

Binary Representation

If all we can store is O’s and 1’s, how do we
represent other numbers (e.g., 237)

* By representing numbers in base 2 (binary)

instead of base 10 (decimal).

In decimal:

e Observation: |[104| 1102 (hundreds place)
+ 07 10" (tens place)
+ 41100 (ones place)

* The decimal representation of a number is a sum of
multiples of the powers of ten.

Binary Representation

If all we can store is O’s and 1’s, how do we
represent other numbers (e.g., 237)

* By representing numbers in base 2 (binary)

instead of base 10 (decimal).

In decimal:

e Observation: 104 = 1*f0e (hundreds place)
+ 0*[10' (tens place)
+ 4*100 (ones place)

e Key idea: use 2 here instead of 10.

Binary to Decimal

2° 24 23 22 2 20

e In decimal, each digit represents a multiple
of a power of 2

Binary to Decimal

1] 0 |1 1 11
2° 24 23 22 2 20
32 + 8 + 4 + 2 + 1

= 47

e In decimal, each digit represents a multiple

of a power of 2

e 10111 in binary is 47 in decimal.

Decimal to Binary

Converting decimal to binary goes the other way.

Problem: write 23 as a sum of powers of 2

A. 10111
B. 11101
C. 01100

D. 11110

(-
O
-
O

g
©

e
C
D
7p)
O
-
Q.
O
-
=
-
©

=

O
D

L

T

the decimal number 23 iIs:

Decimal to Binary

Converting decimal to binary goes the other way.

Problem: write 23 as a sum of powers of 2

=

O ~ ~ —~ —~
— E E £ £
~MN O 0O 00
__7310
©

— 1 I .
N TN
ANNINDNMNM

' N N N N’

A. 10111
B. 11101
C. 01100

D. 11110

(-
O
-
O

g
©

e
C
D
7p)
O
-
Q.
O
-
=
-
©

=

O
D

L

T

the decimal number 23 iIs:

That’s how int works.

e \What about str and £float?

How do you store strings?

Various conventions exist:
ASCII, Unicode

Astrisa sequence/éf letters (or characters).

1. Agree by convention on a number that represents each
character.

2. Convert that number to binary.

3. Store a sequence of those numbers to form a string.

How do you store strings?
ASCII TABLE

Decimal Hex Char Decimal Hex Char |Decimal Hex Char | Decimal Hex Char
0 0 [NULL] 32 20 [SPACE] | 64 40 @ 96 60

1 1 [START OF HEADING] 33 21 ! 65 41 A 97 61 a
2 2 [START OF TEXT] 34 22 - 66 42 B 98 62 b
3 3 [END OF TEXT] 35 23 2 67 43 C 99 63 c
a4 a4 [END OF TRANSMISSION] | 36 24 $ 68 44 D 100 64 d
5 5 [ENQUIRY] 37 25 % 69 45 E 101 65 o
6 6 [ACKNOWLEDGE] 38 26 & 70 46 F 102 66 t
7 7 [BELL) 39 27 ' 71 47 G 103 67 g
8 8 [BACKSPACE] 40 28 (72 48 H 104 68 h
9 9 [HORIZONTAL TAB] 41 29) 73 49 I 105 69 i
10 A [LINE FEED] 42 2A . 74 4A J 106 6A
11 B FQ"C».' TAB] 43 2B + 75 4B K 107 6B k
12 C RM FEED] 44 2C , 76 4aC L 108 6C [
13 D C, RRIAGE RETURN] 45 2D - 77 4D M 109 6D m
14 £ [SHIFT OUT] 46 2E . 78 4E N 110 6E n
15 F [SHIFT IN] a7 2F 79 4F o 111 6F o
16 10 [DATA LINK zscx.pr' 48 30 0 80 50 P 112 70 p
17 11 .ona CONTROL 1] 49 31 1 81 51 Q 113 71 q
18 12 [DEVICE CONTROL 2] 50 32 2 82 52 R 114 72 r
19 13 [DEVICE CONTROL 3] 51 33 3 83 53 S 115 73 s
20 14 [DEVICE CONTROL 4] 52 34 a 84 54 T 116 74 -
21 15 [NEGATIVE ACKNOWLEDGE] | 53 35 5 85 55 U 117 75 u
22 16 [SYNCHRONOUS IDLE] 54 36 6 86 56 v 118 76 v
23 17 [ENG OF TRANS. BLOCK] 55 37 7 87 57 w 119 77 w
24 18 [CANCEL] 56 38 8 88 58 X 120 78 X
25 19 [END OF MEDIUM] 57 39 9 89 59 Y 121 79 y
26 1A [SUBSTITUTE] 58 3A : 90 S5A Z 122 7A >
27 1B [ESCAPE] 59 3B ; 91 5B [123 7B {
28 1C [FILE SEPARATOR] 60 3C < 92 5C \ 124 7C |
29 1D [GROUP SEPARATOR] 61 3D = 93 5D] 125 7D }
30 1E [RECORD SEPARATOR) 62 3E > 94 SE 2 126 7E -
31 1F [UNIT SEPARATOR] 63 3F ? 95 S5F . 127 7F [DEL]

| Decimal Hex Char |Decimal Hex Char | Decimal Hex Char
32 20 [SPACE] |64 40 @ 96 60
33 21 ! 65 a1 A 97 61 a
34 22 " 66 a2 B 98 62 b
35 23 # 67 a3 C 99 63
W |36 24 $ | 68 44 D | 100 64 d
37 25 % 69 a5 E 101 65 e
38 26 & 70 46 F 102 66 f
39 27 71 a7 G 103 67 g
40 28 | 72 48 H 104 68 h
| 41 29) |73 49 | | 105 69 i
42 2A ¢ 74 an) 106 6A]
43 2B+ 75 a8 K 107 6Bk
44 2, 76 ac L 108 6C |
45 2D - 77 aD M 109 6D m
| 46 2E . | 78 4E N | 110 6E n
47 2F | 79 aF O 111 6F o
48 30 0 80 50 P 112 70 p
49 31 1 81 51 Q 113 71 q
50 32 2 82 52 R 114 72 r
| 51 33 3 | 83 53 S | 115 73 s
52 3 4 84 54 T 116 74t
OGE] | 53 35 5 85 55 U 117 75 u
54 36 6 86 56V 118 76 v
] |55 37 7 87 57 W 119 77w
| 56 38 8 | 88 58 X | 120 78 x
57 39 9 89 59 Y 121 79y
58 3A 90 5A Z 122 Az
59 3B ; 91 58 [123 7B {
60 3¢ < 92 5C 124 7C |
| 61 3D = | 93 5D] | 125 7D}

That's how str works.

e \What about float?

e |[t’'s harder to write 4.3752 as a sum of
powers of two.

That's how str works.

* Floating-point numbers are stored similarly to
scientific notation: 4399 94 = 1.39994 * 103

* Need to store the base and the exponent. In
memory, it looks something like this:

sign exponent(8-bit) fraction (23-bit)
L I 1

00111110001000000000000000000000 =0.15625

31 23 0

 Base and exponent are represented as base-2
integers, so the precision is finite: not all numbers
can be represented!

Exercises

e Convert 1010101 to decimal.

e Convert 1023 to binary.

Next week

Making decisions:

if statements and boolean logic.

