
CSCI 141
Lecture 5:

More on print and input

Operator Precedence

 Binary representation

• Academic Honesty and googling for answers:

• Searching the internet to learn about Python features, syntax,
etc. does not violate academic honesty.

• Programmers do this all the time.

• You learned how to solve a problem!

• Searching the internet for a solution to a problem I’ve given
you and copy/pasting code does violate academic honesty.

• You didn’t learn how to solve the problem.

Announcements

Goals
• Know how to use keyword arguments such as the sep and end

keyword arguments to the print function.

• Know how to save a function’s return value to a variable.

• Understand how the + operator behaves with string operands.

• Know how to apply operator precedence rules to determine the
order in which pieces of an expression are evaluated.

• Know how to convert a decimal number to binary and vice
versa.

• Understand the basic idea behind how strings and floating-point
numbers are represented on computers.

What have we covered so far?
• Data is (somehow) stored in memory.

• Each piece of data has a type.

• Variables can assign names to pieces of
data.

• Operators can do things to the data (these
operations are performed by the CPU).

more on this today: representing numbers in binary!

so far we’ve seen: int, float, str

the assignment operator stores a value in a variable, as in:
my_var = “Hello, world!”

so far: assignment operator (=)
 arithmetic operators: (+,-,*,/,**,//,%)

What have we covered so far?
• A function can take inputs (arguments) and

can produce an output (return value)

• Statements are instructions that are
executed

• Expressions are like phrases that can be
evaluated to determine what value they
represent.

so far: assignment statements, such as my_var = 64 + 8

so far:
• functions that return values, like int(42.8)
• arithmetic expressions, like (4 + 2) / 2
• and combinations of other expressions, like (2**3) // int(user_input)

so far: input, print, type, int, float, str

Today’s Quiz
• Please write your name at the top:

• 4 minutes

Lastname, Firstname

Today’s Quiz
• Please write your name at the top:

• 4 minutes

• Working with a neighbor: do your answers
agree? (2 minutes)

Lastname, Firstname

Function Calls: Getting Fancier

Function name

Open paren Close paren

Comma-separated list of arguments

Syntax for a function call:

Function Calls: Getting Fancier
Keyword arguments provide a way to pass optional arguments:

 

The print function can take two keyword arguments:

• sep specifies what goes between the printed arguments
(defaults to sep=“ “)

• end specifies what goes after the last printed argument
(defaults to end=“\n”, the character representing a newline)

sep keyword argument

input’s Return Value
The input function waits for the user to enter
input on the keyboard:

input("Enter some input: ")

What if we want to store the input? Use a variable:

user_text = input("Enter some input: ")

input’s return value is whatever text the user entered

Important: input’s return value is always returns
type str

A Note on Operators
• Operators only work if their operands have

the correct types.

• Some operators can work on more than one
type or combination of types:

int + int => int
int + float => float
float + int => float
float + float => float

Not too surprising:
str + str => str
str * int => str

Maybe a little surprising:

Demo

Demo
• print with sep keyword arg

• print with end keyword arg

• save input and convert to an int

• operator behaviors:
4 + 5 => 9
4.0 + 5 => 9.0
4.0 + 5.0 => 9.0
“a” + “b” => “ab”
“a” + 1 => error
“a” + “b” => “ab”
“a” * 16 => “aaaaaaaaaaaaaaaa”

Order of Operations
We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules?

What if we took the parentheses out:

 result = 5 % (3 ** (6 // 4))

 result = 5 % 3 ** 6 // 4

Order of Operations
We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Parentheses

Exponentiation

Multiplication and Division

Addition and Subtractionpr
ec

ed
en

ce

Order of Operations
We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Parentheses

Exponentiation

Multiplication and Division

Addition and Subtractionpr
ec

ed
en

ce

Example:
10 * 6 ** 2 / 5 // 11 - 4

Order of Operations
We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Parentheses

Exponentiation

Multiplication and Division (left-to-right)

Addition and Subtraction (left-to-right)pr
ec

ed
en

ce

Example:
10 * 6 ** 2 / 5 // 11 - 4

Questions?

Representing Numbers
on Computers

• What happens “under the
hood” when we execute:

• The value 5 gets stored
somewhere in main memory
(and we somehow keep track of
where it’s stored).

result = 5

Main
Memory

Representing Numbers
on Computers

• What happens “under the
hood” when we execute:

• The value 5 gets stored
somewhere in main memory
(and we somehow keep track of
where it’s stored).

result = 5

Main
Memory

5

How are numbers stored in memory?

Representing Numbers
on Computers

Memory is made of specialized electric circuits that provide
cells that can “store” information by being in one of two
states: on or off.

Zoom and enhance!

How are numbers stored in memory?

Representing Numbers
on Computers

We impose mathematical meaning on these states:

“off” = 0

“on” = 1

How are numbers stored in memory?

Representing Numbers
on Computers

1 0 1 1 1 0
We impose mathematical meaning on these states:

“off” = 0

“on” = 1

How are numbers stored in memory?

Representing Numbers
on Computers

1 0 1 1 1 0

Each 1/0 memory location is called a bit.

Representing Numbers
on Computers

1 0 1 1 1 0

Each 0/1 memory location stores one bit.
8 bits is called a byte.

Metric prefixes are used to
represent numbers of bytes,
e.g. kilo, mega, giga, etc.

In computer science, kilo is
not actually 1000, it’s 1024.

Representing Numbers
on Computers

1 0 1 1 1 0

Each 0/1 memory location stores one bit.
8 bits is called a byte.

Metric prefixes are used to
represent numbers of bytes,
e.g. kilo, mega, giga, etc.

In computer science, the
prefixes have slightly
different meaning: kilo is not
actually 1000, it’s 1024.

Representing Numbers
on Computers

1 0 1 1 1 0

Each 0/1 memory location stores one bit.
8 bits is called a byte.

Usual SI prefixes:

• kilo = 103 = 1000

• mega = 106 = 1 million

• giga = 109 = 1 billion

• tera = 1012 = 1 trillion

Base 2 prefixes:

• kilobyte = 210 = 1,024 bytes

• megabyte = 220 = 1,048,576 bytes

• gigabyte = 230 = 1,073,741,824 bytes

• terabyte = 240 = 1,099,511,627,776 bytes

Binary Representation
If all we can store is 0’s and 1’s, how do we
represent other numbers (e.g., 23?)

• By representing numbers in base 2 (binary)
instead of base 10 (decimal).

• Observation:

• The decimal representation of a number is a sum of
multiples of the powers of ten.

104 = 1 * 102

+ 0 * 101

+ 4 * 100

(hundreds place)
(tens place)
(ones place)

In decimal:

Binary Representation
If all we can store is 0’s and 1’s, how do we
represent other numbers (e.g., 23?)

• By representing numbers in base 2 (binary)
instead of base 10 (decimal).

• Observation:

• Key idea: use 2 here instead of 10.

104 = 1 * 102

+ 0 * 101

+ 4 * 100

(hundreds place)
(tens place)
(ones place)

In decimal:

Binary to Decimal

• In decimal, each digit represents a multiple
of a power of 2

1 0 1 1 1 1
202122232425

Binary to Decimal

• In decimal, each digit represents a multiple
of a power of 2

• 10111 in binary is 47 in decimal.

1 0 1 1 1 1
202122232425

24832 + + + + = 471

Decimal to Binary
Converting decimal to binary goes the other way. 
Problem: write 23 as a sum of powers of 2

23 = ? * 24 (16)

+ ? * 23 (8)

+ ? * 22 (4)

+ ? * 21 (2)

+ ? * 20 (1)

The binary representation of
the decimal number 23 is:

A. 10111

B. 11101

C. 01100

D. 11110

23 = ? * 24 (16)

+ ? * 23 (8)

+ ? * 22 (4)

+ ? * 21 (2)

+ ? * 20 (1)

(23-16 = 7 left)1
0 (7-0 = 7 left)
1 (7-4 = 3 left)
1 (3-2 = 1 left)

(1-1 = 0 left)1

The binary representation of
the decimal number 23 is:

A. 10111

B. 11101

C. 01100

D. 11110

Decimal to Binary
Converting decimal to binary goes the other way. 
Problem: write 23 as a sum of powers of 2

That’s how int works.
• What about str and float?

How do you store strings?

A str is a sequence of letters (or characters).

1. Agree by convention on a number that represents each
character.

2. Convert that number to binary.

3. Store a sequence of those numbers to form a string.

Various conventions exist:
ASCII, Unicode

How do you store strings?

That’s how str works.
• What about float?

• It’s harder to write 4.3752 as a sum of
powers of two.

That’s how str works.
• Floating-point numbers are stored similarly to

scientific notation:

• Need to store the base and the exponent. In
memory, it looks something like this:

• Base and exponent are represented as base-2
integers, so the precision is finite: not all numbers
can be represented!

1399.94 = 1.39994 * 103

Exercises
• Convert 1010101 to decimal.

• Convert 1023 to binary.

Next week
Making decisions:

if statements and boolean logic.

