
CSCI 141

Lecture 3

Introduction to Data:


Types, Values, Function Calls, 
Variables



• Assignment 1 is out


• Written questions and a programming problem


• Due next Monday


• You’ll know everything you need to know to 
complete it by Friday’s lecture, but you can 
get started earlier than that.


• Please keep track of the hours you spend

Announcements



Goals
• Understand that data of different types is represented on a computer 

in different ways, and know the meaning of the following types:


• str, int, float

• Know how to use the type conversion functions int, float, str

• Understand the syntax for calling functions with arguments, and 
know how to use the following functions:


• print (with multiple arguments)


• input (with a prompt argument)


• type

• Know how to name and store values using variables



Last time…
• Recall: An algorithm is a step by step 

procedure to solve a problem.


• We sometimes use pseudocode - a 
description of the steps of an algorithm that 
is not in any particular programming 
language.



Warm-Up: Sandwich
• Write pseudocode for an algorithm to make 

a PB&J sandwich.


• Suppose you’re given:


• A fridge that contains a jar of peanut butter and a jar of 
jam


• A counter on which there is a bag with a loaf of sliced 
bread.

(3 minutes)



Exercise: Sandwich
• Compare your pseudocode to your 

neighbor’s. Could you follow the 
instructions?


• Could an alien who’d never heard of a 
sandwich follow the instructions?



The Point
• Computers are the aliens in this story:


• they can’t “fill in the gaps”


• they don’t “know what you meant”


• Computers are stupid. 


• You have to be precise and patient in order 
to communicate with them.



Today: Data
• What is data, anyway?



Data Types
• Different kinds of data are stored differently.


• All pieces of data have a type (sometimes also called 
class)


• We’ve seen 2 already:


• “Hello world!”


• 3 (as in 3 * 4 + 2)


• Here’s another:


• 3.14

String (type str) 

Integer (type int) 

Floating-point number (type float):

a number with a decimal point 



Data Types: Why?
• All pieces of data have a type (sometimes 

also called class)


• Practical reasons:


• Need to know how to store it in memory 
(how to encode it as 1’s and 0’s)


• Need to know what you can do with it  
(can you compute 10 + “Scott”? what about 1.1 + 2?)



Data Types
• How do you find out what type a piece of 

data is?


• Just ask!


• Python has a function called type which tells you the 
type, or class, of any value.



Detour: Calling Functions
• We’ve seen two functions so far: 


• print and input


• What exactly is a function? More on this 
later.


• For now: it’s a thing that calculates or does 
something.



Calling Functions
• We’ve seen two functions so far: 


• print and input


• Functions can take inputs, called arguments


• or not:
“A string” is an argument to the print function call

input is called with no arguments here



Calling Functions
• Syntax for a function call:

Function name

Open paren Close paren

Comma-separated list of arguments



The type Function
• The type function takes one piece of data (a 

value) and gives back the type of the value.


• Examples:

type(16) <class ‘int’>

type(“CSCI 141”) <class ‘str’>

type(16.0) <class ‘float’>

Function call: Result:

Even though 16.0 is an integer, the decimal causes it to be interpreted as a float.



Got that?
What will be the result of calling:


A. class <‘str’>


B. class <‘float’>


C. class <‘int’>


D. class <‘String’>

type(1.2)



Got that?
What will be the result of calling:


A. class <‘str’>


B. class <‘float’>


C. class <‘int’>


D. class <‘String’>

type(“1.2”)



Data Type Conversions
• What if you have “1.4” (class str)  

but you want 1.4 (class float)?


• Here are three more functions:


• Each tries to convert its argument to the given 
type, and throws an error if it’s not possible.

int()

float()

str()



Data Type Conversions
• What if you have “1.4” (class str)  

but you want 1.4 (class float)?


• Here are three more functions:


• Each tries to convert its argument to the given 
type, and throws an error if it’s not possible.

int()

float()

str()



type and type conversions: 
demo



Types and type 
conversions: demo

• int to int


• int to string


• float to int


• string to int


• string to float



Print and Input, Revisited
• print can take any number of arguments, of 

any type. 


• Non-string arguments will be converted into strings 


• Arguments are printed in sequence, separated by a space


• input can take zero or one arguments


• If given one argument, the argument is printed as a 
prompt before waiting for input.



Print and Input: Demo



Print and Input: Demo
• Print with multiple arguments, including 

non-strings


• Print with no arguments


• Input with a prompt



Variables
• Variables are a basic component of all 

programming languages


• They simply allow you to store (or remember) 
values.


• Remembering is one thing computers are 
better at than humans. Try remembering these 
numbers:


5, 8, 12, 44, 89, 65, 44, -67, 43.4, 32



Variables: Definition
• A variable is a name in a program that refers 

to a piece of data (or a value).



Variables: Usage
• A variable is a name in a program that refers 

to a piece of data (or a value).


• How do you use them?

1. Decide what value you want to store in the variable


2. Decide on a sensible name


3. In your program, use the assignment operator to 
store that value in the variable:

32my_age =



Variables: Usage
• A variable is a name in your program that 

refers to a piece of data (or a value).


• How do you use them?

1. Decide what value you want to store in the variable


2. Decide on a sensible name


3. In your program, use the assignment operator to 
store that value in the variable:

32my_age =

The assignment operator.



Variables: Usage

• Think of my_age as a named place where 
we can store any value.


• You can replace the current value with a 
different one:

32my_age =

The assignment operator.

33my_age =



The Assignment Operator: 
Not “Equals”

• Assigning a value is not stating an equality, 
like in math: it’s storing a value in a bucket.

32my_age =

The assignment operator.

my_age = 32
my_age = 33



The Assignment Operator: 
Not “Equals”

“my_age equals 32”


“my_age becomes 32”


“my_age gets 32”


“the variable my_age takes on the value 32”

32my_age =

The assignment operator.


