WHAT ARE YOO WORKING ON?

TRYING TO FiX THE PROBLEMS T
CREATED WHEN I TRIED TO Fix
THE PROBLEMS I CREATED \JHEN
L TRIE) O FAIX THE PROBLEMS

2 I FD |JHEN...

/

7

[™} |8}

CSCI 141

Lecture 2
Hello World, Computers, Algorithms and
Pseudocode

Happenings

e Tuesday, 4/9, 5 pm in CF 316:
ACM Presents: Open Source Development with
Phil Nelson

e Wednesday, 4/10, 4 pm in CF 105;
Whiteboard Coders Present: How to Land a CS
Job

 Tuesday, Apr. 9, 6 pm in MH 105:
NSBE Presents: Black at Microsoft

https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fevent%2Fnsbe-presents-black-microsoft&data=02%7C01%7Cwehrwes%40wwu.edu%7C5c4be9fb07f3435918ad08d6b957bc1e%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636900183827305347&sdata=MH25qNdWS0y9wvZGQ0P7VSCXz5NOEkgcOpflP2BnpWs%3D&reserved=0

Announcements

e Activate your CS Account before lab:

* The CS department has its own computer network and labs.
 You will have a separate account for logging into CS labs.

e The username will be the same. You will set a different
password.

* You must activate your CS account from a non-CS
computer before you arrive at your first lab next week.

e Go to http://password.cs.wwu.edu and follow the
instructions there.

http://password.cs.wwu.edu

Last time: Takeaways

* This course covers the basics of programming, and is the
beginning of a journey towards a new way of thinking and solving
problems.

* Programming and problem-solving are useful skills, whether you
plan to go into computer science or not.

e Making mistakes is an important part of learning. Learn from your
own mistakes, and don’t judge other people for theirs. Be
empathetic.

e Class participation is an important component of this course.

e Don’t stay stuck on assignments for too long: get help early and
often.

(Goals

- A slide (or two) like this will appear at the
beginning of each lecture.

» This tells you what | want you to get out of the
lecture

* | will use it when writing exams

* You can use it when studying for exams

» The goal is transparency: you know what | want
you to know.

Goals: Concepts

- Gain a basic understanding of the components of a computer,
and how they interact:

« |nput and output devices
- CPU
- Storage

* Programs

» Understand the distinction between a programming language
and an Integrated Development Environment

- Know the definition and purpose of algorithms and pseudocode
and how they fit into the software development process.

Goals: Python

- Understand the basic usage of the Thonny IDE

» Know how to use comments to document your

code

+ Be able to write a correct “"Hello World!”

program in Python

Let’s write some code already

* Python is our chosen programming
language in this course.

@ python

* A programming language is a language a
computer can “understand” and execute
(more on this later today)

e We’'ll use a program called Thonny to write ” h
our Python code.

* Thonny is an example of an “Integrated
Development Environment” (IDE): a program
that provides all the features you need to
write, run, and fix errors in programs.

Hello, world!

e Example code

Hello, world!

e Example code

e Concepts demonstrated:
e Comments
e Print function
e Single and double quoted strings

e |nput function

What just happened?

e A lot! This course won’t get into the detalls.

e A simple model of a computer:

D

1 deg

Input Devices

CPU Main

Memory Secondary

Storage

Hardware

e A simple model of a computer:

e
L ded

Input Devices

Supply input from a user to the computer.

Hardware

e A simple model of a computer:

» Output Devices Transmit information back to the user.

Hardware

e A simple model of a computer:

CPU:
Central Processing Unit

Executes instructions to run computer programs.

Hardware

e A simple model of a computer:

Short-term information storage:
Information goes away when the
computer is turned off or the program
quits.

Main
Memory

Hardware

e A simple model of a computer:

Long-term information storage:
Stays around even if computer is off, or
if program quits.

Secondary
Storage

Hardware

e A simple model of a computer:

Input Devices

fs

Main
Memory

Secondary
Storage

"= Output Devices

ABCD Cards

o

C

-E ABCD Practice

The instructor of this course prefers that you
address him as:

A. Professor Wehrwein
B. Scott

C. Dr. Wehrwein

D

. Dude

ABCD Practice

CPU stands for:

A. Coronary Pulse Upkeep

B. Critical Process Undertaker
C. Computer Process User
D

. Central Processing Unit

-E
c I} ABCD Cards

The CPU is like the of the computer.

A. Foot
B. Bookshelf
C. Brain
D

. Treadmilll

Hardware

* A simple model of a computer:

Input Devices

fs

Main
Memory

Secondary
Storage

"= Output Devices

What can computers do?

e Run programs (software).

D

i T

Input Devices

CPU Main

Memory Secondary

Storage

What can computers do?

e Run programs (software).
e That’s it!

P~
i T

Input Devices
CPU Main

ﬁ Memory Secondary

— Storage

What can computers do?

e How does the computer run programs?

CPU

Executes instructions to run computer programs.

R34

8 N CoMPSYNC

NMI

18] NHALT

INBUSAK

NNMI

INBUSRQ

Z80A-CPU

256K - ROM

]
RS232/MIDI Lg

Ril
e BLUE PERITEL
X7 b RED y
Dy] GROUND RGB
- Du oo e
v AUDIO OUT
o0) o
p—ze\ |4 Bo 31 L
E] covols
RS T o v
3 1§ Jro Lol 1 ey w2 R
s O o ol a0]
- 0> 33pf 2% e N 13 e
A 4 T S w o E A2
D28] D294 D30 = N AP i vec
> 1= Ut
N aifp s30pt R3 -
] g [o € B
cimfo ons S oy
. F Z RS 9 |ea
= o4 e o] 5
IC9 ‘_{ 100pt | . - . Y
iy e oo
28] €30} ont
= HLW s H |
| = SIS W C27[10ut
£ o B o RS
e 2 /T

_— - e
* A6 VEE|L
= s <2 N |
™. 3 |Nw Cé % veels g [o
Vo i) —
s - Jsoe B9 G e R
®) o7 % I 3 H—dme S0 1l
= B 5] e
~ 2. o m [T 1)
R7
' 28)] s > ic|io
% 2 o < io|is
S o 1. wlz
NOTE: (1) +3AUSEONLY (3)PERITEL ONLY VERSION IC 11 4. 10fvee rf
IC8 IC16 - 1C20 The RF output may be omitted on @ 1/ ki (953 RD|2
R77 - R86 Peritel only version by omitting 3 1
a1 car the following S0l
- 19, IC10 L‘ X
x2 TRI-TR3 I ‘—DREJ =
€1C7 1000 D25-D31
C8 100uf (2)+2A USE ONLY R28-R30, R44, R46-R56, R58-R60
©9-C12 100nf 1C100, TR100 C22-C26, C28, €29, C32, C33, C49, C50
R100-R118 L2-13
Y2 BE MANII aTAR
C48,C100- C111
L100, L101

Scanned. traces cleaned and text retyped by Andrew Dansby

- adansby@atlantic.net

What can computers do?

 How does that work? Let’s take a closer look...

HEAD

CASSETTE PCB

SW101

IC17

N

—8 NMIRON
—& N-DRIVE-
—& NSTEP

=8 N-INDEX
—8& N-READY
—8 N-RD-DATA

— N-MIRON
N-DRIVE-D
N-STEP
N-DIRIN

—8 NHDSEL
N ATE

—an !

B Racks
NWR-PROT

NAINDEX

N-READY

N-RD-DATA

VDD|
GND)

slcas] car

oo Jiout

CENTRONICS

L100
\14 s
Acios 100ulT e
R104 — RI06 1,
47t SEst
0 A : feme— @ s
102 Ri03
100 | &ra
R103
1000L
& N
18 rec

{OTOR

DRIVE 1

ISSUE DATE

1-11/12/86
2-15/12/86
3-26/1/87

What can computers do?

e How does that work? Let’s not take a closer look.

We don’t need to know the hardware details!
This is an example of abstraction.

What can computers do?

e How does the computer run programs?

Here’s how we’ll think about it:
A program is stored in main memory.

1. Fetch an instruction from memory

2. Decode that instruction
3. EXxecute the instruction

Main
Memory

What can computers do?

e How does the computer run programs?

Here’s how we’ll think about it:
A program is stored in main memory.

1. Fetch an instruction from memory

2. Decode that instruction
3. EXxecute the instruction

Main
Memory

What can computers do?

Consider a simple program:
Multiply 3 by 4, add 2, and print to screen

Main
Memory

What can computers do?

Consider a simple program:
Multiply 3 by 4, add 2, and print to screen

1. Fetch first instruction (“multiply 3 by 4)”

(move it from memory to the CPU)

Main
Memory

What can computers do?

Consider a simple program:
Multiply 3 by 4, add 2, and print to screen

1. Fetch first instruction (“multiply 3 by 4)”
2. Decode: convert to CPU instructions

(translate it into instructions the CPU can execute)
CPU

Main
Memory

What can computers do?

Consider a simple program:
Multiply 3 by 4, add 2, and print to screen

1. Fetch first instruction (“multiply 3 by 4)”
2. Decode: convert to CPU instructions
3. Execute the instruction using CPU circuitry

(actually multiply 3 by 4, and
save the result (12) to memory)

Main
Memory

What can computers do?

Consider a simple program:
Multiply 3 by 4, add 2, and print to screen

N

_
D N
& ‘Q@ ‘q\

\
SR .
N & \ <o 6@(\ >

\ \I\/

1. Fetch first instruction (“multiply 3 by 4)”

2. Decode: convert to CPU instructions

3. Execute the instruction using CPU circuitry
4. Fetch next instruction (“add 2%)

CPU

Main
Memory

What can computers do?

Consider a simple program:
Multiply 3 by 4, add 2, and print to screen

N

_
D N
& ‘Q@ ‘q\

\
SR .
N & \ <o 6@(\ >

\ \I\/

Fetch first instruction (“multiply 3 by 4)”
Decode: convert to CPU instructions
Execute the instruction using CPU circuitry
Fetch next instruction (*add 2%)

Decode

o & b~

CPU

Main
Memory

What can computers do?

Consider a simple program:
Multiply 3 by 4, add 2, and print to screen

Main
Memory

2 A A

Fetch first instruction (“multiply 3 by 4)”
Decode: convert to CPU instructions
Execute the instruction using CPU circuitry
Fetch next instruction (“add 27)

Decode

Execute: add 2 to the result in memory

(add 2 to 12, and store the
result (14) to memory again)

What can computers do?

Consider a simple program:
Multiply 3 by 4, add 2, and print to screen

Main
Memory

N OO R LD

Fetch first instruction (“multiply 3 by 4)”
Decode: convert to CPU instructions
Execute the instruction using CPU circuitry
Fetch next instruction (“add 27)

Decode

Execute: add 2 to the result in memory
Fetch the next instruction (“print to screen”

What can computers do?

Consider a simple program:
Multiply 3 by 4, add 2, and print to screen

Main
Memory

@ N Ok~ OD -

Fetch first instruction (“multiply 3 by 4)”
Decode: convert to CPU instructions
Execute the instruction using CPU circuitry
Fetch next instruction (“add 27)

Decode

Execute: add 2 to the result in memory
Fetch the next instruction (“print to screen”
Decode

What can computers do?

Consider a simple program:
Multiply 3 by 4, add 2, and print to screen

Main
Memory

© 0N Ok DM

Fetch first instruction (“multiply 3 by 4)”
Decode: convert to CPU instructions
Execute the instruction using CPU circuitry
Fetch next instruction (“add 27)

Decode

Execute: add 2 to the result in memory
Fetch the next instruction (“print to screen”
Decode

Execute: print the result in memory to
the screen

-E
c I} ABCD

While running, all program instructions are
stored In:

A. The CPU
B. The recycle bin
C. Input/Output devices

D. Main Memory

-E
c I} ABCD

Which of the following is not an important part
of how computers execute everyday programs?

A. Arithmetic Logic Units
B. SIMD Registers
C. Cache Hierarchies

D. The Call Stack

-E
c I} ABCD

Which of the following is not an important part
of how computers execute everyday programs?

A. Arithmetic Logic Units

B. SIMD Registers E

C. Cache Hierarchies C

D. The Call Stack

Remember: “l don’t know” is a valid ABCD response!

Our Simple Program

e We just executed this:

Multiply 3 by 4, add 2, and print to screen

e |s this a Python program?

Our Simple Program

e We just executed this:

Multiply 3 by 4, add 2, and print to screen

* |s this a Python program? Let’s find out...

Our Simple Program

e We just executed this:
Multiply 3 by 4, add 2, and print to screen
* |s this a Python program? No!

 What Python program accomplishes the
same thing?

print(3 * 4 + 2)

Our Simple Program

* This is an an example of an algorithm:

Multiply 3 by 4, add 2, and print to screen

An algorithm is a sequence of steps that solve a problem.

Our Simple Program

* This is an an example of an algorithm:

Multiply 3 by 4, add 2, and print to screen

 The algorithm is written in pseudocode

Pseudocode is a way of expressing algorithms
independent of any specific programming language:
think of it as an informal but precise description of
an algorithm.

Our Simple Program

* This is an an example of an algorithm:

Multiply 3 by 4, add 2, and print to screen

 The algorithm is written in pseudocode

e This is an implementation of the algorithm
written in Python:

print(3 * 4 + 2)

Python is high-level programming language that can be
translated into instructions that can be executed on a CPU.

Solving Problems with
Computers

An algorithm for solving problems:;

1.

2.

Devise an algorithm to solve the problem
Write the algorithm in pseudocode.

Translate the pseudocode into a programming
language to implement the algorithm.

Execute and test the program, fixing errors
until it solves the problem correctly.

True or False

 \WWhen you are presented with a problem
that can be solved using a computer, the
first step is to start writing a program.

A Eal Example:
alse “| need a tool that adds three

numbers”

B. True

True or False

 \WWhen you are presented with a problem
that can be solved using a computer, the
first step is to start writing a program.

Example:
“I need a tool that adds three

numbers”

B. True

Think about the problem,
sketch out some pseudocode,
then start writing code!

True or False

 \WWhen you are presented with a problem
that can be solved using a computer, the
first step is to start writing a program.

Example:
“I need a tool that adds three

numbers”
B. True “| need a tool to sort 3 million

social security numbers”

Think about the problem,
sketch out some pseudocode,
then start writing code!

