
CSCI 141
Lecture 2


Hello World, Computers, Algorithms and 
Pseudocode



Happenings
• Tuesday, 4/9, 5 pm in CF 316: 

ACM Presents: Open Source Development with 
Phil Nelson

• Wednesday, 4/10, 4 pm in CF 105: 
Whiteboard Coders Present: How to Land a CS 
Job  

• Tuesday, Apr. 9, 6 pm in MH 105: 
NSBE Presents: Black at Microsoft

https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fevent%2Fnsbe-presents-black-microsoft&data=02%7C01%7Cwehrwes%40wwu.edu%7C5c4be9fb07f3435918ad08d6b957bc1e%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636900183827305347&sdata=MH25qNdWS0y9wvZGQ0P7VSCXz5NOEkgcOpflP2BnpWs%3D&reserved=0


• Activate your CS Account before lab:


• The CS department has its own computer network and labs.


• You will have a separate account for logging into CS labs.


• The username will be the same. You will set a different 
password.


• You must activate your CS account from a non-CS 
computer before you arrive at your first lab next week.


• Go to http://password.cs.wwu.edu and follow the 
instructions there.

Announcements

http://password.cs.wwu.edu


Last time: Takeaways
• This course covers the basics of programming, and is the 

beginning of a journey towards a new way of thinking and solving 
problems.


• Programming and problem-solving are useful skills, whether you 
plan to go into computer science or not.


• Making mistakes is an important part of learning. Learn from your 
own mistakes, and don’t judge other people for theirs. Be 
empathetic.


• Class participation is an important component of this course.


• Don’t stay stuck on assignments for too long: get help early and 
often.



Goals
• A slide (or two) like this will appear at the 

beginning of each lecture.


• This tells you what I want you to get out of the 
lecture


• I will use it when writing exams


• You can use it when studying for exams


• The goal is transparency: you know what I want 
you to know.



Goals: Concepts
• Gain a basic understanding of the components of a computer, 

and how they interact:


• Input and output devices


• CPU


• Storage


• Programs


• Understand the distinction between a programming language 
and an Integrated Development Environment


• Know the definition and purpose of algorithms and pseudocode 
and how they fit into the software development process.



Goals: Python
• Understand the basic usage of the Thonny IDE


• Know how to use comments to document your 
code


• Be able to write a correct “Hello World!” 
program in Python



Let’s write some code already
• Python is our chosen programming 

language in this course. 


• A programming language is a language a 
computer can “understand” and execute  
(more on this later today)


• We’ll use a program called Thonny to write 
our Python code.


• Thonny is an example of an “Integrated 
Development Environment” (IDE): a program 
that provides all the features you need to 
write, run, and fix errors in programs.



Hello, world!
• Example code



Hello, world!
• Example code


• Concepts demonstrated:


• Comments


• Print function


• Single and double quoted strings


• Input function



What just happened?
• A lot! This course won’t get into the details.


• A simple model of a computer:

CPU Main 
Memory Secondary 

Storage
Output Devices

Input Devices



Hardware
• A simple model of a computer:

Input Devices
Supply input from a user to the computer. 



Hardware
• A simple model of a computer:

Output Devices Transmit information back to the user.



Hardware
• A simple model of a computer:

CPU: 
Central Processing Unit

Executes instructions to run computer programs. 



Hardware
• A simple model of a computer:

Main 
Memory

Short-term information storage:

Information goes away when the 
computer is turned off or the program 
quits.



Hardware
• A simple model of a computer:

Secondary 
Storage

Long-term information storage:

Stays around even if computer is off, or 
if program quits.



Hardware

CPU Main 
Memory Secondary 

Storage
Output Devices

Input Devices

• A simple model of a computer:



ABCD Cards



ABCD Practice
The instructor of this course prefers that you 
address him as:


A. Professor Wehrwein


B. Scott


C. Dr. Wehrwein


D. Dude



ABCD Practice
CPU stands for:


A. Coronary Pulse Upkeep


B. Critical Process Undertaker


C. Computer Process User


D. Central Processing Unit



ABCD Cards
The CPU is like the ______ of the computer.


A. Foot


B. Bookshelf


C. Brain


D. Treadmill



Hardware
• A simple model of a computer:

CPU Main 
Memory Secondary 

Storage
Output Devices

Input Devices



What can computers do?

CPU Main 
Memory Secondary 

Storage
Output Devices

Input Devices

• Run programs (software).



What can computers do?
• Run programs (software).


• That’s it!

CPU Main 
Memory Secondary 

Storage
Output Devices

Input Devices



What can computers do?
• How does the computer run programs?

CPU

Executes instructions to run computer programs. 



What can computers do?
• How does that work? Let’s take a closer look…

CPU



What can computers do?
• How does that work?

CPU

Let’s not take a closer look.


We don’t need to know the hardware details!

This is an example of abstraction. 



What can computers do?
• How does the computer run programs?

CPU

Here’s how we’ll think about it:

A program is stored in main memory.


1. Fetch an instruction from memory

2. Decode that instruction

3. Execute the instruction

Main 
Memory



What can computers do?
• How does the computer run programs?

CPU

Here’s how we’ll think about it:

A program is stored in main memory.


1. Fetch an instruction from memory

2. Decode that instruction

3. Execute the instruction

Main 
Memory



What can computers do?

CPU

Main 
Memory

Consider a simple program:

Multiply 3 by 4, add 2, and print to screen




What can computers do?

CPU

Main 
Memory

Consider a simple program:

Multiply 3 by 4, add 2, and print to screen


(move it from memory to the CPU)

1. Fetch first instruction (“multiply 3 by 4)”



What can computers do?

CPU

Main 
Memory

Consider a simple program:

Multiply 3 by 4, add 2, and print to screen


(translate it into instructions the CPU can execute)

1. Fetch first instruction (“multiply 3 by 4)”

2. Decode: convert to CPU instructions



What can computers do?

CPU

Main 
Memory

Consider a simple program:

Multiply 3 by 4, add 2, and print to screen


1. Fetch first instruction (“multiply 3 by 4)”

2. Decode: convert to CPU instructions 
3. Execute the instruction using CPU circuitry

(actually multiply 3 by 4, and 
save the result (12) to memory)



What can computers do?

CPU

Main 
Memory

Consider a simple program:

Multiply 3 by 4, add 2, and print to screen


1. Fetch first instruction (“multiply 3 by 4)”

2. Decode: convert to CPU instructions 
3. Execute the instruction using CPU circuitry

4. Fetch next instruction (“add 2”)



What can computers do?

CPU

Main 
Memory

Consider a simple program:

Multiply 3 by 4, add 2, and print to screen


1. Fetch first instruction (“multiply 3 by 4)”

2. Decode: convert to CPU instructions 
3. Execute the instruction using CPU circuitry

4. Fetch next instruction (“add 2”)

5. Decode 



What can computers do?

CPU

Main 
Memory

Consider a simple program:

Multiply 3 by 4, add 2, and print to screen


1. Fetch first instruction (“multiply 3 by 4)”

2. Decode: convert to CPU instructions 
3. Execute the instruction using CPU circuitry

4. Fetch next instruction (“add 2”)

5. Decode 
6. Execute: add 2 to the result in memory

(add 2 to 12, and store the 
result (14) to memory again)



What can computers do?

CPU

Main 
Memory

Consider a simple program:

Multiply 3 by 4, add 2, and print to screen


1. Fetch first instruction (“multiply 3 by 4)”

2. Decode: convert to CPU instructions 
3. Execute the instruction using CPU circuitry

4. Fetch next instruction (“add 2”)

5. Decode 
6. Execute: add 2 to the result in memory

7. Fetch the next instruction (“print to screen”)



What can computers do?

CPU

Main 
Memory

Consider a simple program:

Multiply 3 by 4, add 2, and print to screen


1. Fetch first instruction (“multiply 3 by 4)”

2. Decode: convert to CPU instructions 
3. Execute the instruction using CPU circuitry

4. Fetch next instruction (“add 2”)

5. Decode 
6. Execute: add 2 to the result in memory

7. Fetch the next instruction (“print to screen”)

8. Decode 



What can computers do?

CPU

Main 
Memory

Consider a simple program:

Multiply 3 by 4, add 2, and print to screen


1. Fetch first instruction (“multiply 3 by 4)”

2. Decode: convert to CPU instructions 
3. Execute the instruction using CPU circuitry

4. Fetch next instruction (“add 2”)

5. Decode 
6. Execute: add 2 to the result in memory

7. Fetch the next instruction (“print to screen”)

8. Decode 
9. Execute: print the result in memory to 

the screen



ABCD
While running, all program instructions are 
stored in:


A. The CPU


B. The recycle bin


C. Input/Output devices


D. Main Memory



ABCD
Which of the following is not an important part 
of how computers execute everyday programs?


A. Arithmetic Logic Units


B. SIMD Registers


C. Cache Hierarchies


D. The Call Stack



ABCD
Which of the following is not an important part 
of how computers execute everyday programs?


A. Arithmetic Logic Units


B. SIMD Registers


C. Cache Hierarchies


D. The Call Stack

Remember: “I don’t know” is a valid ABCD response!



Our Simple Program
• We just executed this:


• Is this a Python program?

Multiply 3 by 4, add 2, and print to screen 



Our Simple Program
• We just executed this:


• Is this a Python program? Let’s find out…

Multiply 3 by 4, add 2, and print to screen 



Our Simple Program
• We just executed this:


• Is this a Python program? No!


• What Python program accomplishes the 
same thing?


Multiply 3 by 4, add 2, and print to screen 

print(3 * 4 + 2)



Our Simple Program
• This is an an example of an algorithm:


Multiply 3 by 4, add 2, and print to screen 

An algorithm is a sequence of steps that solve a problem.



Our Simple Program
• This is an an example of an algorithm:


• The algorithm is written in pseudocode


Multiply 3 by 4, add 2, and print to screen 

Pseudocode is a way of expressing algorithms 
independent of any specific programming language: 
think of it as an informal but precise description of 
an algorithm.



Our Simple Program
• This is an an example of an algorithm:


• The algorithm is written in pseudocode


• This is an implementation of the algorithm 
written in Python:


Multiply 3 by 4, add 2, and print to screen 

print(3 * 4 + 2)
Python is high-level programming language that can be 
translated into instructions that can be executed on a CPU.



Solving Problems with 
Computers

An algorithm for solving problems:


1. Devise an algorithm to solve the problem


2. Write the algorithm in pseudocode.


3. Translate the pseudocode into a programming 
language to implement the algorithm.


4. Execute and test the program, fixing errors 
until it solves the problem correctly.



True or False
• When you are presented with a problem 

that can be solved using a computer, the 
first step is to start writing a program.


A. False


B. True

Example:

“I need a tool that adds three 
numbers”



True or False
• When you are presented with a problem 

that can be solved using a computer, the 
first step is to start writing a program.


A. False


B. True
Think about the problem, 

sketch out some pseudocode,

then start writing code!

Example:

“I need a tool that adds three 
numbers”




True or False
• When you are presented with a problem 

that can be solved using a computer, the 
first step is to start writing a program.


A. False


B. True
Think about the problem, 

sketch out some pseudocode,

then start writing code!

Example:

“I need a tool that adds three 
numbers”

“I need a tool to sort 3 million 
social security numbers”


