
CSCI 141

CSCI 141

Lecture 25

CSCI 141

Lecture 25
Searching and Sorting

Announcements

Announcements
• Reminder: No A5 submissions accepted past

Thursday 12/5 at 10pm

Announcements
• Reminder: No A5 submissions accepted past

Thursday 12/5 at 10pm

• Reminder: Extra TA OH today and tomorrow:

Announcements
• Reminder: No A5 submissions accepted past

Thursday 12/5 at 10pm

• Reminder: Extra TA OH today and tomorrow:

• Kirsten: 10-12 Monday and Tuesday (CF 163)

Announcements
• Reminder: No A5 submissions accepted past

Thursday 12/5 at 10pm

• Reminder: Extra TA OH today and tomorrow:

• Kirsten: 10-12 Monday and Tuesday (CF 163)

• Rory 12-2 Monday and Tuesday (CF 477)

Announcements
• Reminder: No A5 submissions accepted past

Thursday 12/5 at 10pm

• Reminder: Extra TA OH today and tomorrow:

• Kirsten: 10-12 Monday and Tuesday (CF 163)

• Rory 12-2 Monday and Tuesday (CF 477)

• Monday 12/2 (a week from today) there will be a review
quiz.

Announcements
• Reminder: No A5 submissions accepted past

Thursday 12/5 at 10pm

• Reminder: Extra TA OH today and tomorrow:

• Kirsten: 10-12 Monday and Tuesday (CF 163)

• Rory 12-2 Monday and Tuesday (CF 477)

• Monday 12/2 (a week from today) there will be a review
quiz.

• Delivered via Socrative, but counted towards QOTD credit; worth 2
QOTDs.

Announcements
• Regular QOTDs are done! Suggestion:

spend the time doing a bit of studying
every day.

• Sample coding questions for the final exam
will be out by next Monday (aiming for
tomorrow).

Suppose the file rick.txt contains:
Never gonna give you up

What is the output of the following code?
print(open("rick.txt", "r").read(5).split("e"))

A.Nvr
B.Never
C.["N", "e", "v", "e", "r"]
D.["N", "v", "r"]

QOTD

print("_".join("88r4if4r462".split("r4")))

QOTD

print("_".join("88r4if4r462".split("r4")))

"88r4if4r462".split("r4")

QOTD

print("_".join("88r4if4r462".split("r4")))

"88r4if4r462".split("r4")

print("_".join(["88", "if4, "62"]))

QOTD

print("_".join("88r4if4r462".split("r4")))

"88r4if4r462".split("r4")

print("_".join(["88", "if4, "62"]))

print("88_if4_62")

QOTD
Start: 4pm
End: 7pm
3h

fin.txt:

fin = open("fin.txt", 'r')
fot = open("fot.txt", 'w')

for line in fin:
 fl = line.strip().split(': ')

 fot.write(fl[-1])
 fot.write(fl[0])

fot.close()
fin.close()

fot = open("fot.txt", 'r')
a = fot.read(3)
fot.seek(8)
print(a, fot.read())
fot.close()

QOTD
Start: 4pm
End: 7pm
3h

fin.txt:

fin = open("fin.txt", 'r')
fot = open("fot.txt", 'w')

for line in fin:
 fl = line.strip().split(': ')

 fot.write(fl[-1])
 fot.write(fl[0])

fot.close()
fin.close()

fot = open("fot.txt", 'r')
a = fot.read(3)
fot.seek(8)
print(a, fot.read())
fot.close()

4pmStart7pmEnd3h3h

fout.txt:

QOTD
Start: 4pm
End: 7pm
3h

fin.txt:

fin = open("fin.txt", 'r')
fot = open("fot.txt", 'w')

for line in fin:
 fl = line.strip().split(': ')

 fot.write(fl[-1])
 fot.write(fl[0])

fot.close()
fin.close()

fot = open("fot.txt", 'r')
a = fot.read(3)
fot.seek(8)
print(a, fot.read())
fot.close()

4pmStart7pmEnd3h3h

fout.txt:

0123456789

QOTD
Start: 4pm
End: 7pm
3h

fin.txt:

fin = open("fin.txt", 'r')
fot = open("fot.txt", 'w')

for line in fin:
 fl = line.strip().split(': ')

 fot.write(fl[-1])
 fot.write(fl[0])

fot.close()
fin.close()

fot = open("fot.txt", 'r')
a = fot.read(3)
fot.seek(8)
print(a, fot.read())
fot.close()

4pmStart7pmEnd3h3h

fout.txt:

0123456789

4pm

QOTD
Start: 4pm
End: 7pm
3h

fin.txt:

fin = open("fin.txt", 'r')
fot = open("fot.txt", 'w')

for line in fin:
 fl = line.strip().split(': ')

 fot.write(fl[-1])
 fot.write(fl[0])

fot.close()
fin.close()

fot = open("fot.txt", 'r')
a = fot.read(3)
fot.seek(8)
print(a, fot.read())
fot.close()

4pmStart7pmEnd3h3h

fout.txt:

0123456789

4pm
7pmEnd3h3h

QOTD
Start: 4pm
End: 7pm
3h

fin.txt:

fin = open("fin.txt", 'r')
fot = open("fot.txt", 'w')

for line in fin:
 fl = line.strip().split(': ')

 fot.write(fl[-1])
 fot.write(fl[0])

fot.close()
fin.close()

fot = open("fot.txt", 'r')
a = fot.read(3)
fot.seek(8)
print(a, fot.read())
fot.close()

4pmStart7pmEnd3h3h

fout.txt:

0123456789

4pm
7pmEnd3h3h

4pm 7pmEnd3h3hOutput:

Computer Science:
An Analogy

CSCI 141 : spelling and grammar

::

Most of computer science : literature

Computer Science:
An Analogy

CSCI 141 : learning to use a telescope

::

computer science : astronomy

What does the rest of
computer science look like?
Many, many "subfields":

• Systems: designing computer systems that do useful stuff. 
Thank these people for your operating system, most of the
underpinnings of the internet, etc. (CSCI 247, 347, 447, 367, ...)

• Theory: answering questions about what can be done (efficiently) on a
computer.  
Thank these people for the ability to do many of the things you take for
granted without (literally) having to wait hundreds of years. (CSCI 301,
305, 405, ...)

• Programming languages: studying, designing, and implementing
languages.  
Thank these people for the ability to write Python instead of typing out
1's and 0's. (CSCI 301, 410, 450)

What does the rest of
computer science look like?
Many other sub-fields, some of which are more "applied":

• computer vision (497P)

• computer graphics (480)

• human-computer interaction (346)

• machine learning (471)

• robotics (372)

• ...

finding a value in a list
def find(v, lst):
 """ Return the index of the first
 occurrence of v in lst.
 Return -1 if v is not in the list.
 Precondition: lst is a list. """

Task: write pseudocode to solve this problem.

Analysis of Algorithms:
Searching a list

What's the most efficient way to find a value in a list?

In a list of N elements, how many comparisons does
our algorithm make:

• in the "best" case?

• in the "worst" case?

• in the "average" case?

finding a value in a sorted list
def find(v, sorted_lst):
 """ Return the index of the first occurrence
 of v in lst.
 Return -1 if v is not in the list.
 Precondition: lst is a list of things that
 can be compared with the < operator, and is
 in sorted order (i.e. lst[i] <= lst[i+1] for
 all i in range(len(lst)-1) """

Task: write pseudocode to solve this problem.

Analysis of Algorithms:
Searching a sorted list

What's the most efficient way to find a value in a list?

In a list of N elements, how many comparisons does
our algorithm make:

• in the "best" case?

• in the "worst" case?

• in the "average" case?

Sorting a List

Sorting a List
Okay, so searching is fast in a sorted list. 
 
 
 
 

Sorting a List
Okay, so searching is fast in a sorted list. 
 
 
 
 

... how can we sort a list?

Sorting a List
def sort(lst):
 """ Sort the given list.
 Precondition: lst is a list of things
 that can be compared with the < operator.
 Postcondition: lst[i] <= lst[i+1] for all
 i in range(len(list)-1).
 """

Example list: [8, 4, 7, 9, 2, 1, 6, 4]

Task: write pseudocode to solve this problem.

Analysis of Algorithms:
Sorting a list

Analysis of Algorithms:
Sort

What's the most efficient way to sort a list?

In a list of N elements, how many comparisons
does your algorithm make:

• in the "best" case?

• in the "worst" case?

• in the "average" case?

