
CSCI 141

Lecture 24

Reading and Writing Files

CSCI 141

Lecture 24

Reading and Writing Files

Announcements

Announcements
• No labs next week.  

Extra TA office hours instead:

Announcements
• No labs next week.  

Extra TA office hours instead:

• Kirsten: 10-12 Monday and Tuesday (CF 163)

Announcements
• No labs next week.  

Extra TA office hours instead:

• Kirsten: 10-12 Monday and Tuesday (CF 163)

• Rory 12-2 Monday and Tuesday (CF 477)

Goals
• Know the basics of file input/output:

• Reading and seeking - iterating over lines,
read, readlines, seek

• Writing - write method

• Know how to use the convenient string
methods split and join

QOTD
def z4(d1, d2):
 a = d1
 d1 = {}
 d1 = d2
 d1["A"] = 2
 return a

a = {"A": 4, "B": 6}
b = {"A": 6, "B": 11}
f = z4(a, b)
print(a["A"], b["A"], f["A"])

4 2 4

A blast from the past:
A simple model of a computer:

CPU Main
Memory Secondary

Storage
Output Devices

Input Devices

A blast from the past:
A simple model of a computer:

CPU Main
Memory Secondary

Storage
Output Devices

Input Devices

input()

A blast from the past:
A simple model of a computer:

CPU Main
Memory Secondary

Storage
Output Devices

Input Devices

input()

pri
nt(

)

A blast from the past:
A simple model of a computer:

CPU Main
Memory Secondary

Storage
Output Devices

Input Devices

input()

pri
nt(

)

t.d
ot(

)

A blast from the past:
A simple model of a computer:

CPU Main
Memory Secondary

Storage
Output Devices

Input Devices

input()

pri
nt(

)

t.d
ot(

)

a = 4
b = a

A blast from the past:
A simple model of a computer:

CPU Main
Memory Secondary

Storage
Output Devices

Input Devices

input()

pri
nt(

)

t.d
ot(

)

a = 4
b = a

Files live here

A blast from the past:
A simple model of a computer:

CPU Main
Memory Secondary

Storage
Output Devices

Input Devices

Files live here

File Input/Output (I/O)

Files - Opening, Reading
In A5, I provided the code to read the training
and test data from a file (lightly edited):

input_file = open(filename, "r")
for line in input_file:
 if "#" not in line:
 line = line.strip("\n")
 line_list = line.split(",")

Files - Opening, Reading
In A5, I provided the code to read the training
and test data from a file (lightly edited):

input_file = open(filename, "r")
for line in input_file:
 if "#" not in line:
 line = line.strip("\n")
 line_list = line.split(",")

File object

Files - Opening, Reading
In A5, I provided the code to read the training
and test data from a file (lightly edited):

input_file = open(filename, "r")
for line in input_file:
 if "#" not in line:
 line = line.strip("\n")
 line_list = line.split(",")

File object
path to the file (str)

Files - Opening, Reading
In A5, I provided the code to read the training
and test data from a file (lightly edited):

input_file = open(filename, "r")
for line in input_file:
 if "#" not in line:
 line = line.strip("\n")
 line_list = line.split(",")

File object
path to the file (str)

open file for reading

(vs. writing)

Files - Opening, Reading
In A5, I provided the code to read the training
and test data from a file (lightly edited):

input_file = open(filename, "r")
for line in input_file:
 if "#" not in line:
 line = line.strip("\n")
 line_list = line.split(",")

File object
path to the file (str)

open file for reading

(vs. writing)

you can iterate
over a File object (!)

Files - Opening, Reading
In A5, I provided the code to read the training
and test data from a file (lightly edited):

input_file = open(filename, "r")
for line in input_file:
 if "#" not in line:
 line = line.strip("\n")
 line_list = line.split(",")

File object
path to the file (str)

open file for reading

(vs. writing)

you can iterate
over a File object (!) familiar string stuff

Files - Opening, Reading
In A5, I provided the code to read the training
and test data from a file (lightly edited):

input_file = open(filename, "r")
for line in input_file:
 if "#" not in line:
 line = line.strip("\n")
 line_list = line.split(",")

File object
path to the file (str)

open file for reading

(vs. writing)

you can iterate
over a File object (!) familiar string stuffwhat does split do?

String's split method
Splits the string into a list on a given separator, or
all whitespace by default. It "eats" the separators.

string.split(separator_string)

String's split method

a = "This is a sentence."
b = "4.5, 6.8, 82.3"
c = """This is a string with \t weird

whitespace"""
a.split() # on all whitespace
c.split() # on all whitespace
c.split(" ") # on spaces only
b.split() # commas remain
b.split(",") # spaces remain
b.split(", ") # just the values

string.split(separator_string)
Splits the string into a list on a given separator, or
all whitespace by default. It "eats" the separators.

String's join method
string.join(list_of_strings)

a = [1, 2, 3, 4]
" ".join(a) # error - not a list of strings

enumerate gives you pairs of (index, value):
for i, v in enumerate(a):
 a[i] = str(v)

" ".join(a) # => "1 2 3 4"
" one thousand ".join(a)
=> "1 one thousand 2 one thousand 3 one thousand 4

(enumerate - useful, but not on the exam)

Joins its argument's elements into a single string,
separated by the string that join was called on.

String's join method

a = [1, 2, 3, 4]
" ".join(a) # error - not a list of strings

enumerate gives you pairs of (index, value):
for i, v in enumerate(a):
 a[i] = str(v)

" ".join(a) # => "1 2 3 4"
" one thousand ".join(a)
=> "1 one thousand 2 one thousand 3 one thousand 4

(enumerate - useful, but not on the exam)

string.join(list_of_strings)

Joins its argument's elements into a single string,
separated by the string that join was called on.

File objects

read seekwrite

Files - Opening, Reading
In A5, I provided the code to read the training
and test data from a file (lightly edited):

input_file = open(filename, "r")
for line in input_file:
 if "#" not in line:
 line = line.strip("\n")
 line_list = line.split(",")

File object
path to the file (str)

open file for reading

(vs. writing)

you can iterate
over a File object (!) familiar string stuffwhat does split do?

Files - Opening, Reading
In A5, I provided the code to read the training
and test data from a file (lightly edited):

input_file = open(filename, "r")
for line in input_file:
 if "#" not in line:
 line = line.strip("\n")
 line_list = line.split(",")

File object
path to the file (str)

open file for reading

(vs. writing)

you can iterate
over a File object (!) familiar string stuffwhat does split do?

Reading files: demo

Reading files: demo
• file_read.py

Writing files

output_file = open(filename, "w")

output_file.write("a string\n")

Write doesn't behave like print: it writes exactly the
string you give it, with no implicit newlines or spacing

Writing files

output_file = open(filename, "w")

output_file.write("a string\n")

Write doesn't behave like print: it writes exactly the
string you give it, with no implicit newlines or spacing

opens the file for writing

deletes any existing contents!

Writing files: Demo

output_file = open(filename, "w")

output_file.write("a string\n")

Write doesn't behave like print: it writes exactly the
string you give it, with no implicit newlines or spacing

file_read_write.py

Writing files: Demo

output_file = open(filename, "w")

output_file.write("a string\n")

Write doesn't behave like print: it writes exactly the
string you give it, with no implicit newlines or spacing

opens the file for writing

deletes any existing contents!file_read_write.py

Reading files:
why is this cool?

• You can now play with some big data:

• A5, for example.

• Another example - Lab 8:  
Make this map plotting locations and magnitudes of earthquakes

Suppose the file rick.txt contains:
Never gonna give you up

What is the output of the following code?
print(open("rick.txt", "r").read(5).split("e"))

A.Nvr
B.Never
C.["N", "e", "v", "e", "r"]
D.["N", "v", "r"]

What can we do with this?

grep
def grep(string, filename):
 """ Print all lines of the file filename
 that contain the given string.
 Precondition: the file exists. """

split an address
def split_address(addr_line):
 """ Split the postal address in address_line into its
 component pieces. Return a tuple of strings containing:
 (number, street, city, state, zip).
 Precondition: the address matches the following format:
 "<number> <street>, <city> <state> <zip>"
 Example: split_address("516 High St, Bellingham WA 98225")
 => ("516", "High St", "Bellingham", "WA", "98225")
 """

write a spellchecker
def spellcheck(in_filename, out_filename wordlist):
 """ Write a spellchecked version of in_filename to
 out_filename. For each word in the input file, write
 it as-is to the output file if it is in the wordlist;
 otherwise, write it to the output file in ALLCAPS to
 indicate that it's not in the wordlist. """

