
CSCI 141

Lecture 23

Mutable objects and Functions

Announcements

Announcements
• Please get started on A5.

Announcements
• Please get started on A5.

• Slip days apply to A5, but:

Announcements
• Please get started on A5.

• Slip days apply to A5, but:

• No late submissions accepted after Thursday 12/5 at
10pm

Announcements
• Please get started on A5.

• Slip days apply to A5, but:

• No late submissions accepted after Thursday 12/5 at
10pm

• Now is the time to start organizing your study
plan for the final exam.

Goals
• Understand how mutable objects interact with

function calls and scope:

• Objects do not live inside the "boxes" that define scope

• References to objects can cross "box" boundaries.

• Be able to draw memory diagrams for
programs that involve function calls and
mutable objects.

QOTD

a = [3, 4, 5]
a.insert(0, 4)
a[2:] = a[1:4]
a.remove(4)
a.append(a.index(5))
del a[1]
print(len(a))
print(4 not in a)
print(a[-2])

[3, 4, 5]
[4, 3, 4, 5]
[4, 3, 3, 4, 5]
[3, 3, 4, 5]
[3, 3, 4, 5, 3]
[3, 4, 5, 3]
4
False
5

QOTD

• How many lists are created?

• How many variables point to the same list as a?

a = [3]
b = a
a.append(4)
c = a[0]
d = b
a.extend((17, 19))
x = a[-2:]
e = x + [4]

4

QOTD

• How many lists are created?

• How many variables point to the same list as a?

a = [3]
b = a
a.append(4)
c = a[0]
d = b
a.extend((17, 19))
x = a[-2:]
e = x + [4]

4

2

Monday's worksheet
• Let's write some copy_list functions.

Last time: Mutability
weather = [63, "light rain"]
tomorrow = weather
tomorrow[0] = 68
print(weather[0])

0 1
list

weather

int

68
str

"light rain"
tomorrow

int

63

State after the above is executed:

!
Implications of Mutability
• Last time: more than one variable (or list

element) can contain references to the same
object.

• Today: variables obey scope (i.e., live in a
certain "box".

• Objects don't: they exist outside the "box" framework.

• References can cross "box" boundaries.

1. Evaluate all arguments

2. Draw a local "box" inside
the global one

3. Assign argument values to
parameter variables in the
local box

4. Execute the function body

5. When done, erase the
local box

6. Replace the function call
with its return value

def xtty(x, y):
 """ return x ** y """
 return x ** y

a = 3
b = 2
print(xtty(a, b))

Recall the steps to execute a function call:
Mutable Objects and Functions

1. Evaluate all arguments

2. Draw a local "box" inside
the global one

3. Assign argument values to
parameter variables in the
local box

4. Execute the function body

5. When done, erase the
local box

6. Replace the function call
with its return value

def xtty(x, y):
 """ return x ** y """
 return x ** y

a = 3
b = 2
print(xtty(a, b))

Recall the steps to execute a function call:
Mutable Objects and Functions

!
Back to copy_list...

def copy_list(in_list):
 """ Return a new list
 object containing the
 same elements as in_list.
 """
 copy = []
 for element in in_list:
 copy.append(element)

 return copy

1. Evaluate all arguments

2. Draw a local "box" inside
the global one

3. Assign argument values to
parameter variables in the
local box

4. Execute the function body

5. When done, erase the
local box

6. Replace the function call
with its return value

Mutable Objects and Functions
When you pass a list into a function, you're
actually passing a reference to the list:

Mutable Objects and Functions
When you pass a list into a function, you're
actually passing a reference to the list:

(or any mutable object!)

Mutable Objects and Functions
When you pass a list into a function, you're
actually passing a reference to the list:

def z1(a_list):
 a_list[0] = 0

a = [1, 1, 1]
z1(a)
print(a)

(or any mutable object!)

Mutable Objects and Functions

def z1(a_list):
 a_list[0] = 0

a = [1, 1, 1]
z1(a)
print(a)

When you pass a list into a function, you're
actually passing a reference to the list:

Mutable Objects and Functions

def z1(a_list):
 a_list[0] = 0

a = [1, 1, 1]
z1(a)
print(a) a_list points to the same

object as the global variable a

When you pass a list into a function, you're
actually passing a reference to the list:

Mutable Objects and Functions

def z2(a_list):
 a_list = []

a = [1, 1, 1]
z2(a)
print(a)

When you pass a list into a function, you're
actually passing a reference to the list:

Mutable Objects and Functions

def z2(a_list):
 a_list = []

a = [1, 1, 1]
z2(a)
print(a)

The local variable a_list
is reassigned to point to a
new (different) list

When you pass a list into a function, you're
actually passing a reference to the list:

Mutable Objects and Functions

def z2(a_list):
 a_list = []

a = [1, 1, 1]
z2(a)
print(a)

The local variable a_list
is reassigned to point to a
new (different) list
 
The list referenced by a is
unchanged.

When you pass a list into a function, you're
actually passing a reference to the list:

Mutable Objects and Functions
When you pass a list into a function, you're
actually passing a reference to the list:

def z3(x):
 a_list = [x, x, x]
 return a_list
b = 2
a = z3(b)
print(a)

Mutable Objects and Functions
When you pass a list into a function, you're
actually passing a reference to the list:

def z3(x):
 a_list = [x, x, x]
 return a_list
b = 2
a = z3(b)
print(a)

The function creates a new
list, with the local variable
a_list referring to it. 

Mutable Objects and Functions
When you pass a list into a function, you're
actually passing a reference to the list:

def z3(x):
 a_list = [x, x, x]
 return a_list
b = 2
a = z3(b)
print(a)

The function creates a new
list, with the local variable
a_list referring to it. 

The reference to the list is
returned and assigned to a.

Mutable Objects and
Functions

def z0(y):
 y[0] = 4
 return y

b = [5, 6]
c = z0(b)
print(b[0], c[0])

What does this code print?

Mutable Objects and
Functions

def z0(y):
 y[0] = 4
 return y

b = [5, 6]
c = z0(b)
print(b[0], c[0])

A. 4 4
B. 4 5
C. 5 4
D. 5 5

What does this code print?

finding a value in a list
def find(v, lst):
 """ Return the index of the first
 occurrence of v in lst.
 Return -1 if v is not in the list.
 Precondition: lst is a list. """

finding a value in a sorted list
def find(v, sorted_lst):
 """ Return the index of the first occurrence
 of v in lst.
 Return -1 if v is not in the list.
 Precondition: lst is a list of things that
 can be compared with the < operator, and is
 in sorted order (i.e. lst[i] <= lst[i+1] for
 all i in range(len(lst)-1) """

Write remove_all(v, lst)
def remove_all(v, lst):
 """ Remove ALL occurrences of v from lst.
 Precondition: lst is a list. """

