
CSCI 141

Lecture 22

Variables are References

Mutability's Implications

Announcements

Announcements
• A5 is out! Due in 2 weeks (after Thanksgiving

break).

Announcements
• A5 is out! Due in 2 weeks (after Thanksgiving

break).

• Suggestion: get it mostly done this week.

Announcements
• A5 is out! Due in 2 weeks (after Thanksgiving

break).

• Suggestion: get it mostly done this week.

• Next week is Thanksgiving week

Announcements
• A5 is out! Due in 2 weeks (after Thanksgiving

break).

• Suggestion: get it mostly done this week.

• Next week is Thanksgiving week

• No labs

Announcements
• A5 is out! Due in 2 weeks (after Thanksgiving

break).

• Suggestion: get it mostly done this week.

• Next week is Thanksgiving week

• No labs

• Class Monday

Announcements
• A5 is out! Due in 2 weeks (after Thanksgiving

break).

• Suggestion: get it mostly done this week.

• Next week is Thanksgiving week

• No labs

• Class Monday

• No class Wednesday or Friday

Goals
• Understand what you're being asked to do in A5.

• Understand the implications of variables holding
references to mutable objects:

• Multiple variables can refer to the same object.

• Be able to draw memory diagrams for code
snippets involving mutable objects.

• Know how to query or modify lists using the
following: index, insert, remove, del

A5

xkcd.com/1838

http://xkcd.com/1838

A5: Machine Learning!

960 × 720

A5: Machine Learning!

A5: Machine Learning!
okay but it's not actually that crazy

Let's talk about creatures.

Some creatures are monsters.

Some creatures are not monsters.

You can't always tell by looking at them.

A5: Machine Learning!
okay but it's not actually that crazy

Let's talk about creatures.

Some creatures are monsters.

Some creatures are not monsters.

You can't always tell by looking at them.

Problem setup:

we have a dataset of known monsters and non-monsters.

and we want to look at their attributes to figure out how to decide
whether a new, never-before-seen creature is a monster.

Size Toothiness Monster?
2 12 N
3 11 N
6 18 N
5 23 N

12 100 Y
21 84 Y
17 104 Y
10 112 Y

Known Creatures:

4 22 ?

Unknown creature:

Size Tooth Mnstr
2 12 N
3 11 N
6 18 N
5 23 N

12 100 Y
21 84 Y
17 104 Y
10 112 Y

Known Creatures:

4 22 ?
Unknown creature:

A scheme for guessing
whether an unseen
creatures is a monster:

1. Find the average size of non-monsters 
 

2. Find the average size of monsters 

3. Cast a "vote" as follows:

4. Repeat the same procedure for the toothiness attribute.

5. Tally the votes and guess majority vote winner.

Size Tooth Mnstr
2 12 N
3 11 N
6 18 N
5 23 N

12 100 Y
21 84 Y
17 104 Y
10 112 Y

Known Creatures:

4 22 ?
Unknown creature:

A scheme for guessing
whether an unseen
creatures is a monster:

1. Find the average size of non-monsters 
 

2. Find the average size of monsters 

3. Cast a "vote" as follows:

4. Repeat the same procedure for the toothiness attribute.

5. Tally the votes and guess majority vote winner.

Size Tooth Mnstr
2 12 N
3 11 N
6 18 N
5 23 N

12 100 Y
21 84 Y
17 104 Y
10 112 Y

Known Creatures:

4 22 ?
Unknown creature:

A scheme for guessing
whether an unseen
creatures is a monster:

1. Find the average size of non-monsters 
 

2. Find the average size of monsters 

3. Cast a "vote" as follows:

= 4

4. Repeat the same procedure for the toothiness attribute.

5. Tally the votes and guess majority vote winner.

Size Tooth Mnstr
2 12 N
3 11 N
6 18 N
5 23 N

12 100 Y
21 84 Y
17 104 Y
10 112 Y

Known Creatures:

4 22 ?
Unknown creature:

A scheme for guessing
whether an unseen
creatures is a monster:

1. Find the average size of non-monsters 
 

2. Find the average size of monsters 

3. Cast a "vote" as follows:

= 4

4. Repeat the same procedure for the toothiness attribute.

5. Tally the votes and guess majority vote winner.

Size Tooth Mnstr
2 12 N
3 11 N
6 18 N
5 23 N

12 100 Y
21 84 Y
17 104 Y
10 112 Y

Known Creatures:

4 22 ?
Unknown creature:

A scheme for guessing
whether an unseen
creatures is a monster:

1. Find the average size of non-monsters 
 

2. Find the average size of monsters 

3. Cast a "vote" as follows:

= 4

= 15

4. Repeat the same procedure for the toothiness attribute.

5. Tally the votes and guess majority vote winner.

Size Tooth Mnstr
2 12 N
3 11 N
6 18 N
5 23 N

12 100 Y
21 84 Y
17 104 Y
10 112 Y

Known Creatures:

4 22 ?
Unknown creature:

A scheme for guessing
whether an unseen
creatures is a monster:

1. Find the average size of non-monsters 
 

2. Find the average size of monsters 

3. Cast a "vote" as follows:

• If the unknown creature's size is closer
to the Monster average, vote Monster. 

= 4

= 15

4. Repeat the same procedure for the toothiness attribute.

5. Tally the votes and guess majority vote winner.

Size Tooth Mnstr
2 12 N
3 11 N
6 18 N
5 23 N

12 100 Y
21 84 Y
17 104 Y
10 112 Y

Known Creatures:

4 22 ?
Unknown creature:

A scheme for guessing
whether an unseen
creatures is a monster:

1. Find the average size of non-monsters 
 

2. Find the average size of monsters 

3. Cast a "vote" as follows:

• If the unknown creature's size is closer
to the Monster average, vote Monster. 

• If the creature's size is closer to the non-
Monster average, vote non-Monster.

= 4

= 15

4. Repeat the same procedure for the toothiness attribute.

5. Tally the votes and guess majority vote winner.

A5
• Creatures --> tumors

• Monster --> malignant

• Non-monster --> benign

• Size and toothiness --> radius, texture, area, ... 
 (a total of 10 attributes)

I want to show you
something weird.

I want to show you
something weird.

• Demo:

a = [4, 5]

b = a

b[0] = 1

print(a[0])

Objects and Variables:
Digging a little deeper

When we talked about variables...

Objects and Variables:
Digging a little deeper

When we talked about variables...
Sometimes I got lazy and wrote:

Objects and Variables:
Digging a little deeper

When we talked about variables...

number 2

Sometimes I got lazy and wrote:

Objects and Variables:
Digging a little deeper

When we talked about variables...
Sometimes I got lazy and wrote:

Objects and Variables:
Digging a little deeper

When we talked about variables...

but what's truly happening is:

Sometimes I got lazy and wrote:

Objects and Variables:
Digging a little deeper

When we talked about variables...

but what's truly happening is:

number

Sometimes I got lazy and wrote:

Objects and Variables:
Digging a little deeper

When we talked about variables...

but what's truly happening is:

number

int

2

Sometimes I got lazy and wrote:

Objects and Variables:
Digging a little deeper

When we talked about variables...

but what's truly happening is:

number

int

2

Sometimes I got lazy and wrote:

All variables store references to objects.

Objects can have any type

All variables store
references to objects
In code: In memory:

All variables store
references to objects
In code:

number = 2

In memory:

All variables store
references to objects
In code:

number = 2

In memory:

int

2

All variables store
references to objects
In code:

number = 2

In memory:

number
int

2

All variables store
references to objects
In code:

number = 2

In memory:

number
int

2

All variables store
references to objects
In code:

number = 2

In memory:

number
int

2

All variables store
references to objects
In code:

number = 2

In memory:

number
int

2

number = 4

All variables store
references to objects
In code:

number = 2

In memory:

number
int

2

int

4
number = 4

All variables store
references to objects
In code:

number = 2

In memory:

number
int

2

int

4
number = 4

Like strings, ints are immutable:

You can't change its value.

You can only make a new one with a different value.

All variables store
references to objects
In code:

number = 2

In memory:

number
int

2

int

4
number = 4

All variables store
references to objects
In code:

number = 2

In memory:

number
int

2

int

4
number = 4

Aside: What happens to the 2 object?

All variables store
references to objects
In code:

number = 2

In memory:

number
int

2

int

4
number = 4

Aside: What happens to the 2 object?
• If no variables refer to it, Python deletes it automatically.

All variables store
references to objects
In code:

number = 2

In memory:

number
int

2

int

4
number = 4

Aside: What happens to the 2 object?
• If no variables refer to it, Python deletes it automatically.
• This is called garbage collection.

All variables store
references to objects
In code:

number = 2

In memory:

number
int

2

int

4
number = 4

For immutable objects, the fact that variables hold
references doesn't have many interesting consequences.

Aside: What happens to the 2 object?
• If no variables refer to it, Python deletes it automatically.
• This is called garbage collection.

Worksheet - Problem 1

Execute the following, drawing and updating the
memory diagram for each variable and object involved.

number = 2
other_number = number
number += 1

Worksheet - Problem 1

Execute the following, drawing and updating the
memory diagram for each variable and object involved.

number = 2
other_number = number
number += 1

(whiteboard)

What about mutable objects?

All variables store
references to objects

In code: In memory:

What about mutable objects?

All variables store
references to objects

In code: In memory:

a = [4, 5]  

What about mutable objects?

All variables store
references to objects

In code: In memory:

a = [4, 5]  
0 1

4 5

list

What about mutable objects?

All variables store
references to objects

In code: In memory:

a = [4, 5]  
0 1

4 5

list

a

What about mutable objects?

All variables store
references to objects

In code: In memory:

a = [4, 5]  

b = a

0 1

4 5

list

a

What about mutable objects?

All variables store
references to objects

In code: In memory:

a = [4, 5]  

b = a

0 1

4 5

list

a

b

What about mutable objects?

All variables store
references to objects

In code: In memory:

a = [4, 5]  

b = a

0 1

4 5

list

a

b

The value of a is a reference to that list object, so

the new value of b is also a reference to that same list!

What about mutable objects?

All variables store
references to objects

In code: In memory:

a = [4, 5]

b = a

0 1

4 5

list

a

b

[1, 5] # !!!

What about mutable objects?

All variables store
references to objects

In code: In memory:

a = [4, 5]

b = a

0 1

4 5

list

a

bb[0] = 1  

[1, 5] # !!!

What about mutable objects?

All variables store
references to objects

In code: In memory:

a = [4, 5]

b = a

0 1

4 5

list

a

bb[0] = 1  

1

[1, 5] # !!!

What about mutable objects?

All variables store
references to objects

In code: In memory:

a = [4, 5]

b = a

0 1

4 5

list

a

bb[0] = 1  

print(a)

1

[1, 5] # !!!

What about mutable objects?

All variables store
references to objects

In code: In memory:

a = [4, 5]

b = a

0 1

4 5

list

a

bb[0] = 1  

print(a)

1

[1, 5] # !!!

More than one variable can
refer to the same object.

Don't make this mistake

you did not just create a copy of a

a = [1, 2, 3]
b = a

Don't make this mistake

you did not just create a copy of a

To create a true copy of a mutable object, you can't
simply assign the object to a new variable.

a = [1, 2, 3]
b = a

List elements store
references to objects

In code: In memory:

a = [4, 5] 0 1

1 5

lista

I lied to you again!

List elements are just like variables!

List elements store
references to objects

In code: In memory (the true picture):

a = [4, 5] 0 1
lista

List elements are just like variables!

int

4
int

5

0 1 2 3 4
list

weather

int

63 str

"light rain"

int

8
str

"SSW"

float

29.75

weather = [63, "light rain", 8, "SSW", 29.75]

List elements store
references to objects

0 1 2 3 4
list

weather

int

63
int

8
str

"SSW"

float

29.75

weather = [63, "light rain", 8, "SSW", 29.75]
weather[1] = "cloudy"

str

"light rain"

List elements store
references to objects

0 1 2 3 4
list

weather

int

63
int

8
str

"SSW"

float

29.75

weather = [63, "light rain", 8, "SSW", 29.75]
weather[1] = "cloudy"

str

"cloudy"

str

"light rain"

List elements store
references to objects

0 1 2 3 4
list

weather

int

63
int

8
str

"SSW"

float

29.75

weather = [63, "light rain", 8, "SSW", 29.75]
weather[1] = "cloudy"

str

"cloudy"

str

"light rain"

List elements store
references to objects

0 1 2 3 4
list

weather

int

63
int

8
str

"SSW"

float

29.75

weather = [63, "light rain", 8, "SSW", 29.75]
weather[1] = "cloudy"

str

"cloudy"

str

"light rain"

List elements store
references to objects

Implications of Mutability
weather = [63, "light rain"]
tomorrow_weather = weather
tomorrow_weather[0] = 68
print(weather[0])

ABCD: What does the above code print?

A. light rain
B. Error
C. 63
D. 68

Implications of Mutability
weather = [63, "light rain"]
tomorrow_weather = weather
tomorrow_weather[0] = 68
print(weather[0])

0 1
list

weather

int

63
str

"light rain"

After creating the initial list:

On the board: how does this picture change as the code is executed?

Creating lists vs
Creating references

• A list literal creates a new list 

• List assignment does not create a new list 

• List concatenation creates a new list 

• List slicing creates a new list 

a = [4, 5, 6]

b = a

c = a + b

d = a[:1]

A few more list operations:

A few more list operations:
my_list.index(value)  
Return the index of the first occurrence of value in my_list  
Throw an error if value is not in my_list.

A few more list operations:
my_list.index(value)  
Return the index of the first occurrence of value in my_list  
Throw an error if value is not in my_list.

my_list.insert(index, value)  
Inserts value into my_list at index, shifting all following elements one
spot to the right.

A few more list operations:
my_list.index(value)  
Return the index of the first occurrence of value in my_list  
Throw an error if value is not in my_list.

my_list.insert(index, value)  
Inserts value into my_list at index, shifting all following elements one
spot to the right.

my_list.remove(value)  
Removes the first item from the list whose value is equal to value.
Causes an error if value is not in my_list.

A few more list operations:
my_list.index(value)  
Return the index of the first occurrence of value in my_list  
Throw an error if value is not in my_list.

my_list.insert(index, value)  
Inserts value into my_list at index, shifting all following elements one
spot to the right.

my_list.remove(value)  
Removes the first item from the list whose value is equal to value.
Causes an error if value is not in my_list.

del my_list[index]  
Removes the element at index, shifting all following elements one spot
to the left.

abc = ["B", "C"]
abc.index("C")
abc.index("F")
abc.insert(0, "A")
abc.remove("C")
abc.remove("F")
del abc[0]

index, insert, remove, del:
Demo

Worksheet - Problem 2

a = []
b = [1]
a.insert(0, b)
b[0] = 4
a.insert(0, b)

Execute the following, drawing and updating the
memory diagram for each variable and object involved.

Worksheet - Problem 2
a = []
b = [1]
a.insert(0, b)
b[0] = 4
a.insert(0, b)
print(a)

What does this print?

Worksheet - Problem 2
a = []
b = [1]
a.insert(0, b)
b[0] = 4
a.insert(0, b)
print(a)

A. [1, 4]
B. [4, 4]
C. [[1], [4]]
D. [[4], [4]]

What does this print?

Problem 3
Write a function that returns a true copy (i.e., a different
list object containing the same values) of a given list.

def copy_list(in_list):
 """ Return a new list object containing
 the same elements as in_list.
 Precondition: in_list's contents are
 all immutable. """

Problem 3
Write a function that returns a true copy (i.e., a different
list object containing the same values) of a given list.

def copy_list(in_list):
 """ Return a new list object containing
 the same elements as in_list.
 Precondition: in_list's contents are
 all immutable. """

Hint: one possible approach uses a loop and the append method.

Problem 4

def snap(avengers):
 """ Remove a randomly chosen half of the
 elements from the given list of avengers
 """

