JOFFREY
CERSEI
WALDER FREY
MERYN TRANT
TYWIN LANNISTER

THE RED WOMAN
BERIC DONDARRION
THOROS OF MYR
ILYN PAYNE
THE MOUNTAIN |
THE HOUND A7

CSCI 141

Lecture 20
Lists
Mutability

Happenings

Tech Talk: SPIE
o Women in Software Development at SPIE

o Wednesday, November 13t 5:30-7:00 PM in CF 115

CS Mentors Present: Debugging Workshop, Master the Art of Debugging
o Thursday, November 14t 4:00 PM 1n CF 165

MIX IT UP

SCIENCE
lPA\S‘]f

StoryGaI.Iery THE GOOD w THE BAD

The Art of Salary Negotiation with Jamie Lee, Hosted by AWC
o Friday, November 15t 5:00-6:30 PM 1n AW 204

A study of graduating university students found that only 7% of female
students attempted to negotiate an initial job offer as compared to 57% of
men (Babcock & Laschever, 2003). This created a starting salary
difference of 7.4%.

"...by not negotiating their job at the beginning of their
career, they're leaving anywhere between $1 million and
$1.5 million on the table in lost earnings over their lifetime."

Announcements

Announcements

» A4 is due tonight! Yay!

Announcements

» A4 is due tonight! Yay!

» A5 will be out this weekend, due Monday

12/2.

Announcements

» A4 is due tonight! Yay!

» A5 will be out this weekend, due Monday

12/2.

 |'ll discuss how to approach A5 in class on Monday.

Goals

Know how to create, index, slice, and check for
membership in lists.

Understand the behavior of the +, *, in, not in,
operators on lists.

Know how to use the assignment operator on list
elements and slices

Know how to use the list methods append, and extend

Know the definition of mutability, and which sequence
types are mutable (lists) and immutable (strings, tuples)

QOTD

"To be or not to be".find("be") == 4

'Boo" .replace("0o", "0").lower() <= "boo"

no" in "To be or not to be"

"stark” not in "Tony Stark”

QOTD

def sub 1lt(s):
0

count =
for 1 in range(len(s)):
if s[1:] < s:

count += 1
return count

print(sub 1t ("branStark"))

QOTD

def sub 1lt(s):
count = 0
for 1 in range(len(s))
if s[1:] < s:
count += 1
return count

print(sub 1t ("branStark"))

0 O UL WN R o

s[i:] < s
branStark < branStark
ranStark < branStark
anStark < branStark
nStark < branStark
Stark < branStark
tark < branStark
ark < branStark
rk < branStark
k < branStark

QOTD

def sub 1lt(s):
count = 0
for 1 in range(len(s)):
if s[1:] < s:
count += 1
return count

s[i:] < s
branStark < branStark
ranStark < branStark
anStark < branStark
nStark < branStark
Stark < branStark
tark < branStark
ark < branStark
rk < branStark
k < branStark

print(sub 1t ("branStark"))

0 O UL WN R~ o

QOTD

def sub 1lt(s):
count = 0
for 1 in range(len(s)):
if s[1:] < s:
count += 1
return count

s[i:] < s
branStark < branStark
ranStark < branStark
anStark < branStark
nStark < branStark
Stark < branStark
tark < branStark
ark < branStark
rk < branStark
k < branStark

print(sub 1t ("branStark"))

0 dJ O UL WN R~ o

QOTD

def sub 1lt(s):
count = 0
for 1 in range(len(s)):
if s[1:] < s:
count += 1
return count

s[i:] < s
branStark < branStark
ranStark < branStark
anStark < branStark
nStark < branStark
Stark < branStark
tark < branStark
ark < branStark
rk < branStark
k < branStark

print(sub 1t ("branStark"))

0 dJ O Ul WN R~ o

Lists: Yet Another Sequence Type

A list is an object that contains a sequence of values.
We've seen them before.

Values can be of any type(s)!

Lists: Yet Another Sequence Type

A list is an object that contains a sequence of values.
We've seen them before.

for value in [1, 16, 4]:
print (value)

Values can be of any type(s)!

Lists: Yet Another Sequence Type

A list is an object that contains a sequence of values.
We've seen them before.

for value in [1, 16, 4]:
print (value)

Syntax:

Values can be of any type(s)!

Lists: Yet Another Sequence Type

A list is an object that contains a sequence of values.
We've seen them before.

for value in [1, 16, 4]:
print (value)

Syntax:
lval0O, vall, val2, val3]

Values can be of any type(s)!

Lists: Yet Another Sequence Type

A list is an object that contains a sequence of values.
We've seen them before.

for value in [1, 16, 4]:
print (value)

Syntax:
lval0O, vall, val2, val3]

comma-separated list of values

Values can be of any type(s)!

Lists: Yet Another Sequence Type

A list is an object that contains a sequence of values.
We've seen them before.

for value in [1, 16, 4]:
print(value)

Syntax:
lval0O, vall, val2, val3]

< comma-separated list of values >

surrounded by square brackets

Values can be of any type(s)!

What can we do with Lists?

A lot of this should look familiar.

These things work analogously to strings:
e Indexing

e Slicing

e The len function

* |in and not in operators

e + and * operators

What can we do with Lists?

A lot of this should look familiar.

a list = ["Scott”, 34, 27.7]

These things work analogously to strings:
e Indexing

e Slicing

e The len function

* |in and not in operators

e + and * operators

Demo

A lot of this should look familiar.

These things work analogously to strings:
e Indexing

e Slicing

e The len function

* |in and not in operators

e + and * operators

Demo

A lot of this should look familiar.

a list = ["Scott”, 34, 27.7]

These things work analogously to strings:
e Indexing

e Slicing

e The len function

* |in and not in operators

e + and * operators

Demo

A lot of this should look familiar.

make 'em
iIndex ‘'em
iIndex ‘'em

slice 'em

Demo

A lot of this should look familiar.

a list = ["Scott", 34, 27.7] make 'em
a list[O0] index ‘'em
a list[-1] index 'em

a list[1l:] slice 'em

Demo

Demo

a list = ["Scott”, 34, 27.7]

len(a list)

len(["abc"])

len([])

34 in a list

"34" not in a list

a list + ["Wehrwein", "WWU"]

["na"] * 16 + ["Batman"]

a 1list[0:2]

a list[0] # this is an element of the list

a list[0:1] # this is a length-1 list!

slices always give you back a list.

What can go in lists?

e Like tuples, any value can go in a list.

e tuples, lists, Turtles, ... anything

Demo

Lists can contain any type: lists, tuples, turtles, ...

Demo

Lists can contain any type: lists, tuples, turtles, ...

a list = ["Scott", [34, 27.7, (39, 70)]1]
a 1list[0]

a list[1]

a list[1][2]

a list[1][2][0]

Lists: Lightning Round!

True or False?

Starks —_ ["Ned", "Arya", "Bran", llSansall]

Lists: Lightning Round!

True or False?

Starks - ["Ned", "Arya", "Bran", llSansall]

"Ned" in starks

Lists: Lightning Round!

True or False?

Starks - ["Ned", "Arya", "Bran", llSansall]

J'Ned” in starks

Lists: Lightning Round!

True or False?

Starks - ["Ned", "Arya", "Bran", "Sansa"]

J'Ned” in starks

"Sansa" in starks[1:3]

Lists: Lightning Round!

True or False?

Starks - ["Ned", "Arya", "Bran", "Sansa"]

J'Ned" in starks

x'Sansa" in starks[1:3]

Lists: Lightning Round!

True or False?

Starks - ["Ned", "Arya", "Bran", "Sansa"]

"Ned" in starks

x'Sansa" in starks[1:3]

len(starks[1:4]) == 3

Lists: Lightning Round!

True or False?

Starks - ["Ned", "Arya", "Bran", "Sansa"]

J'Ned” in starks

x'Sansa" in starks[1:3]
/].en(starks[l:él]) == 3

Lists: Lightning Round!

True or False?

Starks - ["Ned", "Arya", "Bran", llSansall]

"Ned" in starks

x'Sansa" in starks[1:3]
ﬁen(starks[l:él]) == 3

"Aryva’ in (starks + ["Jon"]1)[2:]

Lists: Lightning Round!

True or False?

Starks - ["Ned", "Arya", "Bran", llSansall]

"Ned" in starks

x'Sansa" in starks[1:3]
ﬁen(starks[l:él]) == 3
x'Arya" in (starks + ["Jon"])[2:]

Lists: Lightning Round!

True or False?

Starks - ["Ned", "Arya", "Bran", "Sansa"]

"Ned" in starks

x'Sansa" in starks[1:3]
ﬁen(starks[l:él]) == 3

x'Arya" in (starks + ["Jon"])[2:]
len(starks[1:2] * 4) == 8

Lists: Lightning Round!

True or False?

Starks - ["Ned", "Arya", "Bran", "Sansa"]

"Ned" in starks

x'Sansa" in starks[1:3]
/len(starks[l:él]) == 3

x'Arya" in (starks + ["Jon"])[2:]
XJ.en(starks[1:2] * 4) == §

Lists vs Strings: What's the
difference?

1. Strings hold only characters, while lists
can hold values of any type(s).

Lists vs Strings: What's the
difference?

1. Strings hold only characters, while lists
can hold values of any type(s).

...haven't we seen this before?

Lists vs Strings: What's the
difference?

1. Strings hold only characters, while lists
can hold values of any type(s).

...haven't we seen this before?

Tuples are also objects that hold a sequence of
values of any type(s).

Lists vs Strings: What's the
difference?

1. Strings hold only characters, while lists
can hold values of any type(s).

...haven't we seen this before?

Tuples are also objects that hold a sequence of
values of any type(s).

("alpaca", 14, 27.6)

Lists vs Tuples: What's the
difference?

Tuples are also objects that hold a sequence of
values of any type(s).

Lists vs Tuples: What's the
difference?

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists vs Tuples: What's the
difference?

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.

Lists vs Tuples: What's the
difference?

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.
a tuple = ("a", 14, 27.6)

Lists vs Tuples: What's the
difference?

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.
a tuple = ("a", 14, 27.6)
a list = ["a", 14, 27.6]

Lists vs Tuples: What's the
difference?

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.
a tuple = ("a", 14, 27.6)
a list = ["a", 14, 27.6]

a tuple[l] # => 14

Lists vs Tuples: What's the
difference?

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.
a tuple = ("a", 14, 27.6)
a list = ["a", 14, 27.6]

a tuple[l] # => 14
a list[1l] # => 14

Lists vs Tuples: What's the
difference?

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.
a tuple = ("a", 14, 27.6)
a list = ["a", 14, 27.6]

a tuple[l] # => 14
a list[1l] # => 14

a tuple[l] = 0 # causes an error

Lists vs Tuples: What's the
difference?

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.
a tuple = ("a", 14, 27.6)
a list = ["a", 14, 27.6]

a tuple[l] # => 14
a list[1l] # => 14

a tuple[l] = 0 # causes an error
a list[1l] = 0 # a 1list is now ["a", 0, 27.6]

Lists vs Tuples: What's the
difference?

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be chanaged.
a tuple = ("a", 14, 27.6)
a list = ["a", 14, 27.6]

a tuple[l] # => 14
a list[1l] # => 14

a tuple[l] = 0 # causes an error
a list[1l] = 0 # a 1list is now ["a", 0, 27.6]

Lists vs Tuples: What's the
difference?

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be chanaged.
a tuple = ("a", 14, 27.6)
a list = ["a", 14, 27.6]

a tuple[l] # => 14
a list[1l] # => 14

a tuple[l] = 0 # causes an error
a list[1l] = 0 # a 1list is now ["a", 0, 27.6]

Lists are mutable

a list = ["a", 14, 27.6]

a list | +—["a", 14, 27.6]

Lists are mutable

a list = ["a", 14, 27.6]

a 1list[0] = "b"

a list | +—["b", 14, 27.6]

Lists are mutable

a list = ["a", 14, 27.6]

a 1list[0] = "b"

a list.append(19)

a list | +—["b", 14, 27.6, 19]

Lists are mutable

a list = ["a", 14, 27.6]
a 1list[0] = "b"
a list.append(19)

a list.append(["12", 2])

a list | +—["b", 14, 27.6, 19, ["12", 2]]

Lists are mutable

a list = ["a", 14, 27.6]
a 1list[0] = "b"

a list.append(19)

a list.append(["12", 2])

a list.extend([22, 33])

a list | J—["b", 14, 27.6, 19, ["12", 21, 22, 23]

Lists are mutable

Notice the difference between string methods and list methods:

a list.append(19) a_list | —["'b"]

new string = a string.lower()

a string| — "JON"

Lists are mutable

Notice the difference between string methods and list methods:

a list.append(19) a_list | —["'b", 19]

e modifies the list in-place
e has no return value

new string = a string.lower()

a string| — "JON"

Lists are mutable

Notice the difference between string methods and list methods:

a list.append(19) a_list | —["'b", 19]

e modifies the list in-place
e has no return value

new string = a string.lower()

* does not modify a_string a string| — "JON"
* returns a lower-case copy

new string| | "jon’

List Mutability and Methods

[”Abe” ,

["Abe" ,

[["Abe" ,

[”Abe” ,

a = ["Abe", "Ike"]
a.append("JFK")
a.extend(["FDR", "Geo"])
al0] = a[:2]

print(a)

”Ike”, "JFK", [”FDR", llGeOll]]
"Ike", IIJFKH, IIFDRH, llGeoll]

"Ike"], ”Ike", "JFK", "FDR",

llGeOll]

”Ike”, "Ike", ”JFK", IIFDRII’ llGeoll]

List assignment + slicing

List assignment + slicing

We can assign to indices:

List assignment + slicing

We can assign to indices:

a =[5, 6, 7, 8]
al0] = 10

List assignment + slicing

We can assign to indices:

a =[5, 6, 7, 8]
al0] = 10

We can slice out sublists:

List assignment + slicing

We can assign to indices:

a =[5, 6, 7, 8]
al0] = 10

We can slice out sublists:
a[0:3]1 # => [5, 6, 7]

List assignment + slicing

We can assign to indices:

a =[5, 6, 7, 8]
al0] = 10

We can slice out sublists:
a[0:3]1 # => [5, 6, 7]

Can we assign to slices?

List assignment + slicing

We can assign to indices:

a =[5, 6, 7, 8]
al0] = 10

We can slice out sublists:
a[0:3]1 # => [5, 6, 7]

Can we assign to slices?

You betcha! (demo)

List assignment + slicing:
Demo

a=1[5, 6, 7, 8]
a[:2] = [3, 4]

a =[5, 6, 7, 8]
al:3] = a[l:]

a=1[5, 6, 7, 8]
al:2] = al[l:]

Demo: What are lists good
for?

e Generate a list of the fibonacci sequence

e fib_list.py

e Make a deck of cards and deal a blackjack
hand

e Dblackjack.py

e Make a bale of turtles do some crazy stuff.

e Dbale.py

Demo: a bale of turtles

