
CSCI 141
Lecture 20

Lists

Mutability

Happenings
Tech Talk: SPIE

o Women in Software Development at SPIE
o Wednesday, November 13th 5:30-7:00 PM in CF 115

CS Mentors Present: Debugging Workshop, Master the Art of Debugging
o Thursday, November 14th 4:00 PM in CF 165

The Art of Salary Negotiation with Jamie Lee, Hosted by AWC
o Friday, November 15th 5:00-6:30 PM in AW 204

A study of graduating university students found that only 7% of female
students attempted to negotiate an initial job offer as compared to 57% of
men (Babcock & Laschever, 2003). This created a starting salary
difference of 7.4%.

"...by not negotiating their job at the beginning of their
career, they're leaving anywhere between $1 million and
$1.5 million on the table in lost earnings over their lifetime."

Announcements

Announcements
• A4 is due tonight! Yay!

Announcements
• A4 is due tonight! Yay!

• A5 will be out this weekend, due Monday
12/2.

Announcements
• A4 is due tonight! Yay!

• A5 will be out this weekend, due Monday
12/2.

• I'll discuss how to approach A5 in class on Monday.

Goals
• Know how to create, index, slice, and check for

membership in lists.

• Understand the behavior of the +, *, in, not in,
operators on lists.

• Know how to use the assignment operator on list
elements and slices

• Know how to use the list methods append, and extend

• Know the definition of mutability, and which sequence
types are mutable (lists) and immutable (strings, tuples)

QOTD

"To be or not to be".find("be") == 4

"Boo".replace("o", "O").lower() <= "boo"

"no" in "To be or not to be"

"stark" not in "Tony Stark"

QOTD
def sub_lt(s):
 count = 0
 for i in range(len(s)):
 if s[i:] < s:
 count += 1
 return count

print(sub_lt("branStark"))

QOTD
def sub_lt(s):
 count = 0
 for i in range(len(s)):
 if s[i:] < s:
 count += 1
 return count

print(sub_lt("branStark"))

i s[i:] < s
0 branStark < branStark
1 ranStark < branStark
2 anStark < branStark
3 nStark < branStark
4 Stark < branStark
5 tark < branStark
6 ark < branStark
7 rk < branStark
8 k < branStark

QOTD
def sub_lt(s):
 count = 0
 for i in range(len(s)):
 if s[i:] < s:
 count += 1
 return count

print(sub_lt("branStark"))

i s[i:] < s
0 branStark < branStark
1 ranStark < branStark
2 anStark < branStark
3 nStark < branStark
4 Stark < branStark
5 tark < branStark
6 ark < branStark
7 rk < branStark
8 k < branStark

QOTD
def sub_lt(s):
 count = 0
 for i in range(len(s)):
 if s[i:] < s:
 count += 1
 return count

print(sub_lt("branStark"))

i s[i:] < s
0 branStark < branStark
1 ranStark < branStark
2 anStark < branStark
3 nStark < branStark
4 Stark < branStark
5 tark < branStark
6 ark < branStark
7 rk < branStark
8 k < branStark

QOTD
def sub_lt(s):
 count = 0
 for i in range(len(s)):
 if s[i:] < s:
 count += 1
 return count

print(sub_lt("branStark"))

i s[i:] < s
0 branStark < branStark
1 ranStark < branStark
2 anStark < branStark
3 nStark < branStark
4 Stark < branStark
5 tark < branStark
6 ark < branStark
7 rk < branStark
8 k < branStark

Lists: Yet Another Sequence Type

We've seen them before.

Values can be of any type(s)!

A list is an object that contains a sequence of values.

Lists: Yet Another Sequence Type

We've seen them before.

for value in [1, 16, 4]:
 print(value)

Values can be of any type(s)!

A list is an object that contains a sequence of values.

Lists: Yet Another Sequence Type

We've seen them before.

for value in [1, 16, 4]:
 print(value)

Syntax:

Values can be of any type(s)!

A list is an object that contains a sequence of values.

Lists: Yet Another Sequence Type

We've seen them before.

for value in [1, 16, 4]:
 print(value)

[val0, val1, val2, val3]

Syntax:

Values can be of any type(s)!

A list is an object that contains a sequence of values.

Lists: Yet Another Sequence Type

We've seen them before.

for value in [1, 16, 4]:
 print(value)

[val0, val1, val2, val3]

comma-separated list of values

Syntax:

Values can be of any type(s)!

A list is an object that contains a sequence of values.

Lists: Yet Another Sequence Type

We've seen them before.

for value in [1, 16, 4]:
 print(value)

[val0, val1, val2, val3]

comma-separated list of values

surrounded by square brackets

Syntax:

Values can be of any type(s)!

A list is an object that contains a sequence of values.

What can we do with Lists?
A lot of this should look familiar.

These things work analogously to strings:
• Indexing

• Slicing

• The len function

• in and not in operators

• + and * operators

What can we do with Lists?
A lot of this should look familiar.

a_list = ["Scott", 34, 27.7]

These things work analogously to strings:
• Indexing

• Slicing

• The len function

• in and not in operators

• + and * operators

Demo
A lot of this should look familiar.

These things work analogously to strings:
• Indexing

• Slicing

• The len function

• in and not in operators

• + and * operators

Demo
A lot of this should look familiar.

a_list = ["Scott", 34, 27.7]

These things work analogously to strings:
• Indexing

• Slicing

• The len function

• in and not in operators

• + and * operators

Demo
A lot of this should look familiar.

make 'em

index 'em

index 'em

slice 'em

Demo
A lot of this should look familiar.

a_list = ["Scott", 34, 27.7]

a_list[0]

a_list[-1]

a_list[1:]

make 'em

index 'em

index 'em

slice 'em

Demo

Demo
a_list = ["Scott", 34, 27.7]

len(a_list)

len(["abc"])

len([])

34 in a_list

"34" not in a_list

a_list + ["Wehrwein", "WWU"]

["na"] * 16 + ["Batman"]

a_list[0:2]

a_list[0] # this is an element of the list

a_list[0:1] # this is a length-1 list!

slices always give you back a list.

What can go in lists?
• Like tuples, any value can go in a list.

• tuples, lists, Turtles, ... anything

Demo
Lists can contain any type: lists, tuples, turtles, ...

Demo
Lists can contain any type: lists, tuples, turtles, ...

a_list = ["Scott", [34, 27.7, (39, 70)]]

a_list[0]

a_list[1]

a_list[1][2]

a_list[1][2][0]

Lists: Lightning Round!

starks = ["Ned", "Arya", "Bran", "Sansa"]

True or False?

Lists: Lightning Round!

starks = ["Ned", "Arya", "Bran", "Sansa"]

"Ned" in starks

True or False?

Lists: Lightning Round!

starks = ["Ned", "Arya", "Bran", "Sansa"]

"Ned" in starks

True or False?

Lists: Lightning Round!

starks = ["Ned", "Arya", "Bran", "Sansa"]

"Ned" in starks

"Sansa" in starks[1:3]

True or False?

Lists: Lightning Round!

starks = ["Ned", "Arya", "Bran", "Sansa"]

"Ned" in starks

"Sansa" in starks[1:3]

True or False?

Lists: Lightning Round!

starks = ["Ned", "Arya", "Bran", "Sansa"]

"Ned" in starks

"Sansa" in starks[1:3]

len(starks[1:4]) == 3

True or False?

Lists: Lightning Round!

starks = ["Ned", "Arya", "Bran", "Sansa"]

"Ned" in starks

"Sansa" in starks[1:3]

len(starks[1:4]) == 3

True or False?

Lists: Lightning Round!

starks = ["Ned", "Arya", "Bran", "Sansa"]

"Ned" in starks

"Sansa" in starks[1:3]

len(starks[1:4]) == 3

"Arya" in (starks + ["Jon"])[2:]

True or False?

Lists: Lightning Round!

starks = ["Ned", "Arya", "Bran", "Sansa"]

"Ned" in starks

"Sansa" in starks[1:3]

len(starks[1:4]) == 3

"Arya" in (starks + ["Jon"])[2:]

True or False?

Lists: Lightning Round!

starks = ["Ned", "Arya", "Bran", "Sansa"]

"Ned" in starks

"Sansa" in starks[1:3]

len(starks[1:4]) == 3

"Arya" in (starks + ["Jon"])[2:]

len(starks[1:2] * 4) == 8

True or False?

Lists: Lightning Round!

starks = ["Ned", "Arya", "Bran", "Sansa"]

"Ned" in starks

"Sansa" in starks[1:3]

len(starks[1:4]) == 3

"Arya" in (starks + ["Jon"])[2:]

len(starks[1:2] * 4) == 8

True or False?

Lists vs Strings: What's the
difference?

1. Strings hold only characters, while lists
can hold values of any type(s).

Lists vs Strings: What's the
difference?

1. Strings hold only characters, while lists
can hold values of any type(s).

...haven't we seen this before?

Lists vs Strings: What's the
difference?

1. Strings hold only characters, while lists
can hold values of any type(s).

...haven't we seen this before?

Tuples are also objects that hold a sequence of
values of any type(s).

Lists vs Strings: What's the
difference?

1. Strings hold only characters, while lists
can hold values of any type(s).

...haven't we seen this before?

("alpaca", 14, 27.6)

Tuples are also objects that hold a sequence of
values of any type(s).

Lists vs Tuples: What's the
difference?

Tuples are also objects that hold a sequence of
values of any type(s).

Lists vs Tuples: What's the
difference?

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists vs Tuples: What's the
difference?

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.

Lists vs Tuples: What's the
difference?

a_tuple = ("a", 14, 27.6)

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.

Lists vs Tuples: What's the
difference?

a_tuple = ("a", 14, 27.6)
a_list = ["a", 14, 27.6]

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.

Lists vs Tuples: What's the
difference?

a_tuple = ("a", 14, 27.6)
a_list = ["a", 14, 27.6]
 
a_tuple[1] # => 14

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.

Lists vs Tuples: What's the
difference?

a_tuple = ("a", 14, 27.6)
a_list = ["a", 14, 27.6]
 
a_tuple[1] # => 14
a_list[1] # => 14  

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.

Lists vs Tuples: What's the
difference?

a_tuple = ("a", 14, 27.6)
a_list = ["a", 14, 27.6]
 
a_tuple[1] # => 14
a_list[1] # => 14  

a_tuple[1] = 0 # causes an error

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.

Lists vs Tuples: What's the
difference?

a_tuple = ("a", 14, 27.6)
a_list = ["a", 14, 27.6]
 
a_tuple[1] # => 14
a_list[1] # => 14  

a_tuple[1] = 0 # causes an error
a_list[1] = 0 # a_list is now ["a", 0, 27.6]

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.

Lists vs Tuples: What's the
difference?

a_tuple = ("a", 14, 27.6)
a_list = ["a", 14, 27.6]
 
a_tuple[1] # => 14
a_list[1] # => 14  

a_tuple[1] = 0 # causes an error
a_list[1] = 0 # a_list is now ["a", 0, 27.6]

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.

Lists vs Tuples: What's the
difference?

a_tuple = ("a", 14, 27.6)
a_list = ["a", 14, 27.6]
 
a_tuple[1] # => 14
a_list[1] # => 14  

a_tuple[1] = 0 # causes an error
a_list[1] = 0 # a_list is now ["a", 0, 27.6]

Tuples are also objects that hold a sequence of
values of any type(s).

Tuples are immutable: their contents cannot be changed.

Lists are mutable: their contents can be changed.

Lists are mutable
a_list = ["a", 14, 27.6]

["a", 14, 27.6]a_list

Lists are mutable
a_list = ["a", 14, 27.6]

a_list[0] = "b"

["b", 14, 27.6]a_list

Lists are mutable
a_list = ["a", 14, 27.6]

a_list[0] = "b"

a_list.append(19)

["b", 14, 27.6, 19]a_list

Lists are mutable
a_list = ["a", 14, 27.6]

a_list[0] = "b"

a_list.append(19)

a_list.append(["12", 2])

["b", 14, 27.6, 19, ["12", 2]]a_list

Lists are mutable
a_list = ["a", 14, 27.6]

a_list[0] = "b"

a_list.append(19)

a_list.append(["12", 2])

["b", 14, 27.6, 19, ["12", 2], 22, 23]

a_list.extend([22, 33])

a_list

Lists are mutable
Notice the difference between string methods and list methods:

a_list.append(19)

new_string = a_string.lower()

["b"]a_list

"JON"a_string

Lists are mutable
Notice the difference between string methods and list methods:

a_list.append(19)

new_string = a_string.lower()

• modifies the list in-place

• has no return value

["b", 19]a_list

"JON"a_string

Lists are mutable
Notice the difference between string methods and list methods:

a_list.append(19)

new_string = a_string.lower()

• modifies the list in-place

• has no return value

• does not modify a_string

• returns a lower-case copy

["b", 19]a_list

new_string "jon"

"JON"a_string

List Mutability and Methods
a = ["Abe", "Ike"]
a.append("JFK")
a.extend(["FDR", "Geo"])
a[0] = a[:2]
print(a)

A. ["Abe", "Ike", "JFK", ["FDR", "Geo"]]

B. ["Abe", "Ike", "JFK", "FDR", "Geo"]

C. [["Abe", "Ike"], "Ike", "JFK", "FDR", "Geo"]

D. ["Abe", "Ike", "Ike", "JFK", "FDR", "Geo"]

List assignment + slicing

List assignment + slicing
We can assign to indices: 
 
 

List assignment + slicing
We can assign to indices: 
 
 

a = [5, 6, 7, 8]
a[0] = 10

List assignment + slicing
We can assign to indices: 
 
 

We can slice out sublists: 

a = [5, 6, 7, 8]
a[0] = 10

List assignment + slicing
We can assign to indices: 
 
 

We can slice out sublists: 

a = [5, 6, 7, 8]
a[0] = 10

a[0:3] # => [5, 6, 7]

List assignment + slicing
We can assign to indices: 
 
 

We can slice out sublists: 

Can we assign to slices?

a = [5, 6, 7, 8]
a[0] = 10

a[0:3] # => [5, 6, 7]

List assignment + slicing
We can assign to indices: 
 
 

We can slice out sublists: 

Can we assign to slices?

a = [5, 6, 7, 8]
a[0] = 10

a[0:3] # => [5, 6, 7]

You betcha! (demo)

List assignment + slicing:
Demo

a = [5, 6, 7, 8]
a[:2] = [3, 4]

a = [5, 6, 7, 8]
a[:3] = a[1:]

a = [5, 6, 7, 8]
a[:2] = a[1:]

Demo: What are lists good
for?

• Generate a list of the fibonacci sequence

• fib_list.py

• Make a deck of cards and deal a blackjack
hand

• blackjack.py

• Make a bale of turtles do some crazy stuff.

• bale.py

Demo: a bale of turtles
• bale.py

