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Happenings

Tech Talk: SPIE
o Women in Software Development at SPIE

o Wednesday, November 13t 5:30-7:00 PM in CF 115

CS Mentors Present: Debugging Workshop, Master the Art of Debugging
o Thursday, November 14t 4:00 PM 1n CF 165



MIX IT UP
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The Art of Salary Negotiation with Jamie Lee, Hosted by AWC
o Friday, November 15t 5:00-6:30 PM 1n AW 204

A study of graduating university students found that only 7% of female
students attempted to negotiate an initial job offer as compared to 57% of
men (Babcock & Laschever, 2003). This created a starting salary
difference of 7.4%.

"...by not negotiating their job at the beginning of their
career, they're leaving anywhere between $1 million and
$1.5 million on the table in lost earnings over their lifetime."
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Announcements

» A4 is due tonight! Yay!

» A5 will be out this weekend, due Monday

12/2.

 |'ll discuss how to approach A5 in class on Monday.



Goals

Know how to create, index, slice, and check for
membership in lists.

Understand the behavior of the +, *, in, not in,
operators on lists.

Know how to use the assignment operator on list
elements and slices

Know how to use the list methods append, and extend

Know the definition of mutability, and which sequence
types are mutable (lists) and immutable (strings, tuples)



QOTD

"To be or not to be".find("be") == 4

'Boo" .replace("0o", "0").lower() <= "boo"

no" in "To be or not to be"

"stark” not in "Tony Stark”
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Lists: Yet Another Sequence Type

A list is an object that contains a sequence of values.
We've seen them before.

for value in [1, 16, 4]:
print(value)

Syntax:
lval0O, vall, val2, val3]

< comma-separated list of values >

surrounded by square brackets

Values can be of any type(s)!
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A lot of this should look familiar.

a list = ["Scott”, 34, 27.7]

These things work analogously to strings:
e Indexing
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e The len function
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A lot of this should look familiar.
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Demo

A lot of this should look familiar.

a list = ["Scott", 34, 27.7] make 'em
a list[O0] index ‘'em
a list[-1] index 'em

a list[1l:] slice 'em



Demo



Demo

a list = ["Scott”, 34, 27.7]

len(a list)

len(["abc"])

len([])

34 in a list

"34" not in a list

a list + ["Wehrwein", "WWU"]

["na"] * 16 + ["Batman"]

a 1list[0:2]

a list[0] # this is an element of the list

a list[0:1] # this is a length-1 list!

# slices always give you back a list.



What can go in lists?

e Like tuples, any value can go in a list.

e tuples, lists, Turtles, ... anything



Demo

Lists can contain any type: lists, tuples, turtles, ...



Demo

Lists can contain any type: lists, tuples, turtles, ...

a list = ["Scott", [34, 27.7, (39, 70)]1]
a 1list[0]

a list[1]

a list[1][2]

a list[1][2][0]
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True or False?

Starks - ["Ned", "Arya", "Bran", "Sansa"]

"Ned" in starks

x'Sansa" in starks[1:3]
ﬁen(starks[l:él]) == 3

x'Arya" in (starks + ["Jon"])[2:]
len(starks[1:2] * 4) == 8




Lists: Lightning Round!

True or False?

Starks - ["Ned", "Arya", "Bran", "Sansa"]

"Ned" in starks

x'Sansa" in starks[1:3]
/len(starks[l:él]) == 3

x'Arya" in (starks + ["Jon"])[2:]
XJ.en(starks[1:2] * 4) == §
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Lists are mutable

a list = ["a", 14, 27.6]
a 1list[0] = "b"
a list.append(19)

a list.append(["12", 2])

a list | +—["b", 14, 27.6, 19, ["12", 2]]




Lists are mutable

a list = ["a", 14, 27.6]
a 1list[0] = "b"

a list.append(19)

a list.append(["12", 2])

a list.extend([22, 33])

a list | J—["b", 14, 27.6, 19, ["12", 21, 22, 23]
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Lists are mutable

Notice the difference between string methods and list methods:

a list.append(19) a_list | —["'b", 19]

e modifies the list in-place
e has no return value

new string = a string.lower()

* does not modify a_string a string| — "JON"
* returns a lower-case copy

new string| | "jon’




List Mutability and Methods

[”Abe” ,

["Abe" ,

[ ["Abe" ,

[”Abe” ,

a = ["Abe", "Ike"]
a.append( "JFK")
a.extend(["FDR", "Geo"])
al0] = a[:2]

print(a)

”Ike”, "JFK", [”FDR", llGeOll]]
"Ike", IIJFKH, IIFDRH, llGeoll]

"Ike"], ”Ike", "JFK", "FDR",

llGeOll]

”Ike”, "Ike", ”JFK", IIFDRII’ llGeoll]
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List assignment + slicing

We can assign to indices:

a =[5, 6, 7, 8]
al0] = 10

We can slice out sublists:
a[0:3]1 # => [5, 6, 7]

Can we assign to slices?

You betcha! (demo)



List assignment + slicing:
Demo

a=1[5, 6, 7, 8]
a[:2] = [3, 4]

a =[5, 6, 7, 8]
al:3] = a[l:]

a=1[5, 6, 7, 8]
al:2] = al[l:]



Demo: What are lists good
for?

e Generate a list of the fibonacci sequence

e fib_list.py

e Make a deck of cards and deal a blackjack
hand

e Dblackjack.py

e Make a bale of turtles do some crazy stuff.

e Dbale.py



Demo: a bale of turtles




