
CSCI 141
Lecture 19

String Methods

String Comparisons and Ordering

Announcements

Announcements
• A4 due next Wednesday.

Announcements
• A4 due next Wednesday.

• I have office hours 2-3:30 today.

Announcements
• A4 due next Wednesday.

• I have office hours 2-3:30 today.

• QOTD explanations continue to be linked from
the last question.

Announcements
• A4 due next Wednesday.

• I have office hours 2-3:30 today.

• QOTD explanations continue to be linked from
the last question.

• No class monday! No labs next week!

A4
• The green corner should have 255

green.

• The green corner does not need to
have 0 red and 0 blue. 

• My color calculations are based on
distance from the corner, irrespective
of direction.

• Other approaches are ok too!

Goals
• Know how to use a few of the basic methods

of string objects:

• upper, lower, find, replace

• Understand the behavior of the following
operators on strings:

• <, >, ==, !=, in, and not in

• Understand how Python orders strings using lexicographic
ordering

QOTD
s = "blockade"

0 1 2 3 4 5 6 7

b l o c k a d e

-8 -7 -6 -5 -4 -3 -2 -1

print(s[4])
print(s[4:6])
print(s[-5:5])
print(s[:4])
print(s[-4:])

QOTD
s = "blockade"

0 1 2 3 4 5 6 7

b l o c k a d e

-8 -7 -6 -5 -4 -3 -2 -1

print(s[4])
print(s[4:6])
print(s[-5:5])
print(s[:4])
print(s[-4:])

k

QOTD
s = "blockade"

0 1 2 3 4 5 6 7

b l o c k a d e

-8 -7 -6 -5 -4 -3 -2 -1

print(s[4])
print(s[4:6])
print(s[-5:5])
print(s[:4])
print(s[-4:])

k
ka

QOTD
s = "blockade"

0 1 2 3 4 5 6 7

b l o c k a d e

-8 -7 -6 -5 -4 -3 -2 -1

print(s[4])
print(s[4:6])
print(s[-5:5])
print(s[:4])
print(s[-4:])

k
ka
ck

QOTD
s = "blockade"

0 1 2 3 4 5 6 7

b l o c k a d e

-8 -7 -6 -5 -4 -3 -2 -1

print(s[4])
print(s[4:6])
print(s[-5:5])
print(s[:4])
print(s[-4:])

k
ka
ck
bloc

QOTD
s = "blockade"

0 1 2 3 4 5 6 7

b l o c k a d e

-8 -7 -6 -5 -4 -3 -2 -1

print(s[4])
print(s[4:6])
print(s[-5:5])
print(s[:4])
print(s[-4:])

k
ka
ck
bloc
kade

QOTD
def uun_letters(first_name, last_name):
 """ Return the letters in a student's WWU Universal
 Username given the student's first_name and last_name.
 The username begins with the first 6 characters of
 the last name, followed by the first letter of the
 first name. Return the username in all lower case.
 Example: uun_letters("Scott", "Wehrwein") => "wehrwes"
 """

return (last_name[1:6] + first_name[0]).lower()

return (last_name[:6] + first_name[0]).lower()

return last_name[:6].lower() + first_name[:0].lower()

return last_name[0:6].lower() + first_name[0].lower()

QOTD
def uun_letters(first_name, last_name):
 """ Return the letters in a student's WWU Universal
 Username given the student's first_name and last_name.
 The username begins with the first 6 characters of
 the last name, followed by the first letter of the
 first name. Return the username in all lower case.
 Example: uun_letters("Scott", "Wehrwein") => "wehrwes"
 """

return (last_name[1:6] + first_name[0]).lower()

return (last_name[:6] + first_name[0]).lower()

return last_name[:6].lower() + first_name[:0].lower()

return last_name[0:6].lower() + first_name[0].lower()

not the first 6 characters

QOTD
def uun_letters(first_name, last_name):
 """ Return the letters in a student's WWU Universal
 Username given the student's first_name and last_name.
 The username begins with the first 6 characters of
 the last name, followed by the first letter of the
 first name. Return the username in all lower case.
 Example: uun_letters("Scott", "Wehrwein") => "wehrwes"
 """

return (last_name[1:6] + first_name[0]).lower()

return (last_name[:6] + first_name[0]).lower()

return last_name[:6].lower() + first_name[:0].lower()

return last_name[0:6].lower() + first_name[0].lower()

not the first 6 characters

QOTD
def uun_letters(first_name, last_name):
 """ Return the letters in a student's WWU Universal
 Username given the student's first_name and last_name.
 The username begins with the first 6 characters of
 the last name, followed by the first letter of the
 first name. Return the username in all lower case.
 Example: uun_letters("Scott", "Wehrwein") => "wehrwes"
 """

return (last_name[1:6] + first_name[0]).lower()

return (last_name[:6] + first_name[0]).lower()

return last_name[:6].lower() + first_name[:0].lower()

return last_name[0:6].lower() + first_name[0].lower()

empty string

not the first 6 characters

QOTD
def uun_letters(first_name, last_name):
 """ Return the letters in a student's WWU Universal
 Username given the student's first_name and last_name.
 The username begins with the first 6 characters of
 the last name, followed by the first letter of the
 first name. Return the username in all lower case.
 Example: uun_letters("Scott", "Wehrwein") => "wehrwes"
 """

return (last_name[1:6] + first_name[0]).lower()

return (last_name[:6] + first_name[0]).lower()

return last_name[:6].lower() + first_name[:0].lower()

return last_name[0:6].lower() + first_name[0].lower()

empty string

not the first 6 characters

Strings have methods!

Strings are objects - they also have methods.

0 1 2 3 4 5 6 7

W e h r w e i n

Ind
Val

str

last_name = "Wehrwein"

last_name

Strings have methods!

Strings are objects - they also have methods.

0 1 2 3 4 5 6 7

W e h r w e i n

Ind
Val

str

last_name = "Wehrwein"

variable that refers to
a string object

last_name

Strings have methods!

Strings are objects - they also have methods.

0 1 2 3 4 5 6 7

W e h r w e i n

Ind
Val

str

last_name = "Wehrwein"

a string literalvariable that refers to
a string object

last_name

Strings have methods!

Strings are objects - they also have methods.

0 1 2 3 4 5 6 7

W e h r w e i n

Ind
Val

str

last_name = "Wehrwein"

a string literalvariable that refers to
a string object

last_name

last_name.upper()

Strings have methods!

Strings are objects - they also have methods.

0 1 2 3 4 5 6 7

W e h r w e i n

Ind
Val

str

last_name = "Wehrwein"

a string literalvariable that refers to
a string object

last_name

last_name.upper()

method of a
string object

Strings have methods!

Strings are objects - they also have methods.

0 1 2 3 4 5 6 7

W e h r w e i n

Ind
Val

str

last_name = "Wehrwein"

a string literalvariable that refers to
a string object

last_name

last_name.upper()

method of a
string object

"Wehrwein".upper()

Methods can be called directly
on the literal string, too:

Strings have many methods

Method Parameters Description
upper none Returns a string in all uppercase

lower none Returns a string in all lowercase

strip none Returns a string with the leading and trailing whitespace
removed

count item Returns the number of occurrences of item

replace old, new Replaces all occurrences of old substring with new

find item Returns the leftmost index where the substring item is
found, or -1 if not found

here are a few of them:

String methods: demo
upper, lower, count, replace, find, strip

String methods: demo
upper, lower, count, replace, find, strip

word = "Banana"
word.upper()
word.lower()
word.count("a")
word.replace("a", "A")

line = " snails are out "
line.find("s")
line.find("snails")
line.find("banana")
line.strip()
line.strip().upper()

word = "Bellingham"
word = word[:9] + word[9].upper()

String Methods: More
The textbook (Section 9.5) has a more complete
listing of string methods:

http://interactivepython.org/runestone/static/thinkcspy/Strings/StringMethods.html

The Python documentation has full details of the
str type and all its methods:

https://docs.python.org/3/library/stdtypes.html#str

You should know how to use upper, lower,
replace, and find.

http://interactivepython.org/runestone/static/thinkcspy/Strings/StringMethods.html
https://docs.python.org/3/library/stdtypes.html#str

String Methods: Evaluation
Problem: write an expression to determine if a
string user_input contains the word "yes", with
any capitalization and with any amount of spaces.

user_input

String Methods: Evaluation
Problem: write an expression to determine if a
string user_input contains the word "yes", with
any capitalization and with any amount of spaces.

user_input

=> " Y eS "

String Methods
Problem: write an expression to determine if a
string user_input contains the word "yes", with
any capitalization and with any amount of spaces.

user_input.replace(" ", "")

=> "YeS"

String Methods
Problem: write an expression to determine if a
string user_input contains the word "yes", with
any capitalization and with any amount of spaces.

user_input.replace(" ", "")

=> "yes"

.lower()

String Methods
Problem: write an expression to determine if a
string user_input contains the word "yes", with
any capitalization and with any amount of spaces.

user_input.replace(" ", "")

=> "yes"

.lower()

dot (method call) operators are evaluated left-to-right!

String Methods
Problem: write an expression to determine if a
string user_input contains the word "yes", with
any capitalization and with any amount of spaces.

user_input.replace(" ", "").lower() == "yes"

=> " Y eS " .replace(" ", "").lower() == "yes"

=> "YeS".lower() == "yes"

=> "yes" == "yes"

dot (method call) operators are evaluated left-to-right!

String Methods
Problem: write an expression to determine if a
string user_input contains the word "yes", with
any capitalization and with any amount of spaces.

user_input.replace(" ", "").lower() == "yes"

=> " Y eS " .replace(" ", "").lower() == "yes"

=> "YeS".lower() == "yes"

=> "yes" == "yes"

=> True
dot (method call) operators are evaluated left-to-right!

Effects vs Return Values, again.
Most turtle methods change the state of the
turtle object they're called on: 

Most string methods return a new string with the
given modifications:

t.forward(100) # actually moves t forward

Effects vs Return Values, again.
Most turtle methods change the state of the
turtle object they're called on: 

Most string methods return a new string with the
given modifications:

s = "BOO"

t.forward(100) # actually moves t forward

Effects vs Return Values, again.
Most turtle methods change the state of the
turtle object they're called on: 

Most string methods return a new string with the
given modifications:

s = "BOO"
s.lower() # => "boo"

t.forward(100) # actually moves t forward

Effects vs Return Values, again.
Most turtle methods change the state of the
turtle object they're called on: 

Most string methods return a new string with the
given modifications:

s = "BOO"
s.lower() # => "boo"
print(s) # prints BOO

t.forward(100) # actually moves t forward

Effects vs Return Values, again.
Most turtle methods change the state of the
turtle object they're called on: 

Most string methods return a new string with the
given modifications:

s = "BOO"
s.lower() # => "boo"
print(s) # prints BOO
t = s.lower() # if you want "boo", save it

t.forward(100) # actually moves t forward

Effects vs Return Values, again.
Most turtle methods change the state of the
turtle object they're called on: 

Most string methods return a new string with the
given modifications:

s = "BOO"
s.lower() # => "boo"
print(s) # prints BOO
t = s.lower() # if you want "boo", save it

t.forward(100) # actually moves t forward

Why is this? Because strings
can't be modified. Try this:

Effects vs Return Values, again.
Most turtle methods change the state of the
turtle object they're called on: 

Most string methods return a new string with the
given modifications:

s = "Scott"
s[3] = "o" # error

s = "BOO"
s.lower() # => "boo"
print(s) # prints BOO
t = s.lower() # if you want "boo", save it

t.forward(100) # actually moves t forward

Why is this? Because strings
can't be modified. Try this:

String Methods
• What does this expression evaluate to?

"Wow".replace("W", "t").upper()

A. tot

B. WOW

C. TOW

D. TOT

Operators on Strings
Familiar:

+ concatenation

* repetition

[] indexing, slicing

== equals

!= not equals

Operators on Strings
Familiar:

+ concatenation

* repetition

[] indexing, slicing

== equals

!= not equals

"a" + "b" => "ab"

Operators on Strings
Familiar:

+ concatenation

* repetition

[] indexing, slicing

== equals

!= not equals

"a" + "b" => "ab"

"ha" * 3 => "hahaha"

Operators on Strings
Familiar:

+ concatenation

* repetition

[] indexing, slicing

== equals

!= not equals

"a" + "b" => "ab"

"ha" * 3 => "hahaha"

"batman"[:3] => "bat"

Operators on Strings
Familiar:

+ concatenation

* repetition

[] indexing, slicing

== equals

!= not equals

"a" + "b" => "ab"

"ha" * 3 => "hahaha"

"batman"[:3] => "bat"

"antman" == "natman" => False

Operators on Strings
Familiar:

+ concatenation

* repetition

[] indexing, slicing

== equals

!= not equals

"a" + "b" => "ab"

"ha" * 3 => "hahaha"

"batman"[:3] => "bat"

"antman" != natman" => True

"antman" == "natman" => False

String operators

String operators
Unfamiliar, but intuitive:

String operators
Unfamiliar, but intuitive:

in  
 
 
 

String operators
Unfamiliar, but intuitive:

in  
 
 
 

"a" in "abc". # => True

String operators
Unfamiliar, but intuitive:

in  
 
 
 

"a" in "abc". # => True
"dab" in "abacadabra" # => True

String operators
Unfamiliar, but intuitive:

in  
 
 
 

"a" in "abc". # => True
"dab" in "abacadabra" # => True
"A" in "abate" # => False

String operators
Unfamiliar, but intuitive:

in  
 
 
 

"a" in "abc". # => True
"dab" in "abacadabra" # => True
"A" in "abate" # => False
"eye" in "team" # => False

String operators
Unfamiliar, but intuitive:

in  
 
 
 

not in: exactly what you think (opposite of in)

"a" in "abc". # => True
"dab" in "abacadabra" # => True
"A" in "abate" # => False
"eye" in "team" # => False

String operators

Inequality comparisons follow lexicographic ordering:

• Order based on the first character

• If tied, use the next character,

• and so on

much like in a dictionary

These are all True:

"a" < "b"
"ab" < "ac"
"a" < "aa"
"" < "a"

Familiar, but (a little) unintuitive:

<, >

String operators
Familiar, but (a little) unintuitive:

<, >

Caveat: lexicographic ordering is case-sensitive, and ALL
upper-case characters come before ALL lower-case letters:

These are all True:

"A" < "a"
"Z" < "a"
"Jello" < "hello"

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Tie - next character

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Tie - next character

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Tie - next character

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Tie - next character

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

i > e, so "Bellingham" > "Bellevue"

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

i > e, so "Bellingham" > "Bellevue"

Aside:

"Bell" < "Bellingham" => True

When all letters are tied, the shorter word comes first.

Lexicographic Ordering:
Aside

"?" < "!" # => ???

Lexicographic Ordering:
Aside

"?" < "!" # =>

The ord function takes a character and returns its
numerical (ASCII) code, which determines its ordering.

???

Lexicographic Ordering:
Aside

"?" < "!" # =>

The ord function takes a character and returns its
numerical (ASCII) code, which determines its ordering.

The chr function takes a numerical (ASCII) code and
returns the corresponding character.

???

Lexicographic Ordering:
Aside

"?" < "!" # =>

The ord function takes a character and returns its
numerical (ASCII) code, which determines its ordering.

The chr function takes a numerical (ASCII) code and
returns the corresponding character.

ord("?") # => 63
ord("!") # => 33

???

Lexicographic Ordering:
Aside

"?" < "!" # =>

The ord function takes a character and returns its
numerical (ASCII) code, which determines its ordering.

The chr function takes a numerical (ASCII) code and
returns the corresponding character.

ord("?") # => 63
ord("!") # => 33 "?" < "!" # => False

???

Lexicographic Ordering

ABCD: Which of the these evaluates to True?

A. "bat" > "rat"

B. "tap" < "bear"

C. "Jam" < "bet"

D. "STEAM" > "STEP!"

