
CSCI 141
Lecture 18

Strings: Slicing, String Methods,  
Comparison and in operators

Announcements

Announcements
• QOTD is out of 5 points (whoops)

Announcements
• QOTD is out of 5 points (whoops)

• QOTD explanation is linked from the
explanation of the question on Canvas

Announcements
• QOTD is out of 5 points (whoops)

• QOTD explanation is linked from the
explanation of the question on Canvas

• A4 is due next Wednesday.

Announcements
• QOTD is out of 5 points (whoops)

• QOTD explanation is linked from the
explanation of the question on Canvas

• A4 is due next Wednesday.

• Monday's a holiday, so (I assume) no mentor hours that day!

Announcements
• QOTD is out of 5 points (whoops)

• QOTD explanation is linked from the
explanation of the question on Canvas

• A4 is due next Wednesday.

• Monday's a holiday, so (I assume) no mentor hours that day!

• Monday's a holiday, so no labs next week!

Goals
• Know how to use slicing to get substrings

• Know how to use a few of the basic methods of string objects:

• upper, lower, find, replace

• Understand the behavior of the following operators on strings:

• <, >, ==, !=, in, and not in

• Know strings are compared using lexicographic ordering

• Understand the meaning and implications of strings being
immutable objects.

Inclusive Learning
Environment: Redux

• Remember Lecture 1? 
 
 
 
 

Inclusive Learning
Environment: Redux

• Remember Lecture 1? 
 
 
 
 

Inclusive Learning
Environment: Redux

• Remember Lecture 1? 
 
 
 
 

• Anyone felt like this at any point in the
course?

Inclusive Learning
Environment: Redux

• Remember Lecture 1? 
 
 
 
 

• Anyone felt like this at any point in the
course? (I have...)

Inclusive Learning
Environment: Redux

• My goal: A learning environment in which everyone feels
comfortable, curious, and excited to learn.

• You learn by doing.

• This involves making mistakes and asking questions.

• Nobody writes perfect code on the first try, not even professionals.

• Keep this in mind when: 
 
 
 
 
 

Inclusive Learning
Environment: Redux

• My goal: A learning environment in which everyone feels
comfortable, curious, and excited to learn.

• You learn by doing.

• This involves making mistakes and asking questions.

• Nobody writes perfect code on the first try, not even professionals.

• Keep this in mind when: 
 
 
 
 
 

This is you.

Inclusive Learning
Environment: Redux

Inclusive Learning
Environment: Redux

• My goal: A learning environment in which everyone feels
comfortable, curious, and excited to learn.

• You learn by doing.

• This involves making mistakes and asking questions.

• Nobody writes perfect code on the first try, not even professionals.

• Also keep this in mind when: 
 
 
 
 
 

Inclusive Learning
Environment: Redux

This is you.

• My goal: A learning environment in which everyone feels
comfortable, curious, and excited to learn.

• You learn by doing.

• This involves making mistakes and asking questions.

• Nobody writes perfect code on the first try, not even professionals.

• Also keep this in mind when: 
 
 
 
 
 

People from underrepresented
groups face extra obstacles.

People from underrepresented
groups face extra obstacles.

This claim is (heavily) backed by scientific research.

People from underrepresented
groups face extra obstacles.

This claim is (heavily) backed by scientific research.
Disclaimer: I am not a psychologist

People from underrepresented
groups face extra obstacles.

Stereotype threat:

stereotypes become self-fulfilling when the subjects
of the stereotype are conscious of them.

This claim is (heavily) backed by scientific research.
Disclaimer: I am not a psychologist

People from underrepresented
groups face extra obstacles.

Stereotype threat:

stereotypes become self-fulfilling when the subjects
of the stereotype are conscious of them.

This claim is (heavily) backed by scientific research.

Implicit bias:

well-intentioned people exhibit biases that they're not
even aware they have.

Disclaimer: I am not a psychologist

People from underrepresented
groups face extra obstacles.

Stereotype threat:

stereotypes become self-fulfilling when the subjects
of the stereotype are conscious of them.

Impostor syndrome:

Successes are attributed to luck

Failures are attributed to ability

This claim is (heavily) backed by scientific research.

Implicit bias:

well-intentioned people exhibit biases that they're not
even aware they have.

Disclaimer: I am not a psychologist

Happenings
Computer Science EID Community Office Hours

Equity, Inclusion, and Diversity

Dr. Moushumi Sharmin is new  
Community Ambassador for CS.
Community office hours for Fall 2019 are  
Wednesdays from 10:30-11:30 am (CF 465).
Students, faculty and staff are welcome to discuss
issues related to equity, inclusion, and diversity.

MIX IT UP: Inclusion in STEM Mixer

Last time: Indexing Strings,
Negative Indices

Negative indices count backwards from len(s):

0 1 2 3 4 5 6 7 8 9 10 11 12 13

S u m m e r i s n e a r

-14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

Index:

Index:

Last time: Indexing Strings,
Negative Indices

Negative indices count backwards from len(s):

0 1 2 3 4 5 6 7 8 9 10 11 12 13

S u m m e r i s n e a r

-14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

Index:

Index:

Two possible ways to remember how this works:

Last time: Indexing Strings,
Negative Indices

Negative indices count backwards from len(s):

0 1 2 3 4 5 6 7 8 9 10 11 12 13

S u m m e r i s n e a r

-14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

Index:

Index:

a_string[-5]

is equivalent to

a_string[len(a_string)-5]

Two possible ways to remember how this works:

Last time: Indexing Strings,
Negative Indices

Negative indices count backwards from len(s):

0 1 2 3 4 5 6 7 8 9 10 11 12 13

S u m m e r i s n e a r

-14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

Index:

Index:

a_string[-5]

is equivalent to

a_string[len(a_string)-5]

-1 is always the last
character, and indices
count backwards from
there.

Two possible ways to remember how this works:

QOTD
def flop(value, number):
 output = ""

 for i in range(number, 0, -1):
 output = output + value[i-1]

 for i in range(number, len(value)):
 output = output + value[i]
 return output

Which of the following is not a possible return value of
flop("no time", a) if a is an integer?

QOTD
def flop(value, number):
 output = ""

 for i in range(number, 0, -1):
 output = output + value[i-1]

 for i in range(number, len(value)):
 output = output + value[i]
 return output

Which of the following is not a possible return value of
flop("no time", a) if a is an integer?

Reverse the first "number" characters in value:

QOTD
def flop(value, number):
 output = ""

 for i in range(number, 0, -1):
 output = output + value[i-1]

 for i in range(number, len(value)):
 output = output + value[i]
 return output

Which of the following is not a possible return value of
flop("no time", a) if a is an integer?

Reverse the first "number" characters in value:

Append the substring from number to the end:

QOTD
def flop(value, number):
 output = ""

 for i in range(number, 0, -1):
 output = output + value[i-1]

 for i in range(number, len(value)):
 output = output + value[i]
 return output

Which of the following is not a possible return value of
flop("no time", a)

mit one  

nomite

t onime

on time

emit on

timeno time

if a is an integer?

Reverse the first "number" characters in value:

Append the substring from number to the end:

QOTD
def flop(value, number):
 output = ""

 for i in range(number, 0, -1):
 output = output + value[i-1]

 for i in range(number, len(value)):
 output = output + value[i]
 return output

Which of the following is not a possible return value of
flop("no time", a)

mit one  

nomite

t onime

on time

emit on

timeno time

if a is an integer?

Reverse the first "number" characters in value:

Append the substring from number to the end:

QOTD
def flop(value, number):
 output = ""

 for i in range(number, 0, -1):
 output = output + value[i-1]

 for i in range(number, len(value)):
 output = output + value[i]
 return output

Which of the following is not a possible return value of
flop("no time", a)

mit one  

nomite

t onime

on time

emit on

timeno time

if a is an integer?

Reverse the first "number" characters in value:

Append the substring from number to the end:

QOTD
def flop(value, number):
 output = ""

 for i in range(number, 0, -1):
 output = output + value[i-1]

 for i in range(number, len(value)):
 output = output + value[i]
 return output

Which of the following is not a possible return value of
flop("no time", a)

mit one  

nomite

t onime

on time

emit on

timeno time

if a is an integer?

Reverse the first "number" characters in value:

Append the substring from number to the end:

QOTD
def flop(value, number):
 output = ""

 for i in range(number, 0, -1):
 output = output + value[i-1]

 for i in range(number, len(value)):
 output = output + value[i]
 return output

Which of the following is not a possible return value of
flop("no time", a)

mit one  

nomite

t onime

on time

emit on

timeno time

if a is an integer?

Reverse the first "number" characters in value:

Append the substring from number to the end:

QOTD
def flop(value, number):
 output = ""

 for i in range(number, 0, -1):
 output = output + value[i-1]

 for i in range(number, len(value)):
 output = output + value[i]
 return output

Which of the following is not a possible return value of
flop("no time", a)

mit one  

nomite

t onime

on time

emit on

timeno time

if a is an integer?

Reverse the first "number" characters in value:

Append the substring from number to the end:

QOTD
def flop(value, number):
 output = ""

 for i in range(number, 0, -1):
 output = output + value[i-1]

 for i in range(number, len(value)):
 output = output + value[i]
 return output

Which of the following is not a possible return value of
flop("no time", a)

mit one  

nomite

t onime

on time

emit on

timeno time

if a is an integer?

Reverse the first "number" characters in value:

Append the substring from number to the end:

Worksheet - Exercise 1
def remove_comments(string):
 """ Return a copy of string, but with
 all characters starting with the first
 # symbol removed. If there is no # in
 the string, return input unchanged.
 """

Hint: try a while loop!

Example:

remove_comments("a = b # assign b to a”))
=> "a = b “

Slicing: indexing substrings
alph = "abcdefghij"
alph[0] # => "a"
alph[4] # => "e"

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

Slicing: indexing substrings
alph = "abcdefghij"
alph[0] # => "a"
alph[4] # => "e"

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

What if I want to "index" more than one character at a time?

Slicing: indexing substrings
alph = "abcdefghij"
alph[0] # => "a"
alph[4] # => "e"

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

alph[???] # => "cdef"

What if I want to "index" more than one character at a time?

Slicing: indexing substrings
alph = "abcdefghij"
alph[0] # => "a"
alph[4] # => "e"

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

string[start:end]Slicing syntax:

Slicing: indexing substrings
alph = "abcdefghij"
alph[0] # => "a"
alph[4] # => "e"

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

string[start:end]

index of first character

Slicing syntax:

Slicing: indexing substrings
alph = "abcdefghij"
alph[0] # => "a"
alph[4] # => "e"

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

string[start:end]

index of first character 1 + index of last character

Slicing syntax:

Slicing: indexing substrings
alph = "abcdefghij"
alph[0] # => "a"
alph[4] # => "e"

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

string[start:end]

index of first character 1 + index of last character

just like the range function:
the end index is not included

Slicing syntax:

Slicing: indexing substrings
alph = "abcdefghij"
alph[0] # => "a"
alph[4] # => "e"

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

alph[2:6] # => "cdef"

string[start:end]

index of first character 1 + index of last character

just like the range function:
the end index is not included

Slicing syntax:

Slicing: indexing substrings
alph = "abcdefghij"
alph[0] # => "a"
alph[4] # => "e"

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

alph[2:6] # => "cdef"

alph[0:10] # => "abcdefghij"

string[start:end]

index of first character 1 + index of last character

just like the range function:
the end index is not included

Slicing syntax:

Slicing: indexing substrings
alph = "abcdefghij"
alph[0] # => "a"
alph[4] # => "e"

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

alph[2:6] # => "cdef"

alph[0:10] # => "abcdefghij"

alph[5:-2]

string[start:end]

index of first character 1 + index of last character

just like the range function:
the end index is not included

Slicing syntax:

Slicing: indexing substrings
alph = "abcdefghij"
alph[0] # => "a"
alph[4] # => "e"

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

alph[2:6] # => "cdef"

alph[0:10] # => "abcdefghij"

alph[5:-2] # => "fgh"

string[start:end]

index of first character 1 + index of last character

just like the range function:
the end index is not included

Slicing syntax:

Slicing: indexing substrings
alph = "abcdefghij"

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

string[start:end]

index of first character 1 + index of last character

Slicing syntax:

Slicing: indexing substrings
alph = "abcdefghij"

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

string[start:end]

index of first character 1 + index of last character

Slicing syntax:

If omitted, start

defaults to 0

Slicing: indexing substrings
alph = "abcdefghij"

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

string[start:end]

index of first character 1 + index of last character

Slicing syntax:

If omitted, start

defaults to 0

If omitted, end

defaults to len(string)

Slicing: indexing substrings
alph = "abcdefghij"

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

string[start:end]

index of first character 1 + index of last character

Slicing syntax:

If omitted, start

defaults to 0

If omitted, end

defaults to len(string)

alph[:4] # => “abcd"

Slicing: indexing substrings
alph = "abcdefghij"

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

string[start:end]

index of first character 1 + index of last character

Slicing syntax:

If omitted, start

defaults to 0

If omitted, end

defaults to len(string)

alph[:4] # => “abcd"

alph[5:] # => "fghij"

String Slicing: Demo

String Slicing: Demo
•s = "fibonacci"

• Positive indices: s[1:3]

• Negative indices!? s[-4:9]

• Leaving out start/endpoint: s[:6], s[4:]

• Indices past the end in a slice: s[1:21]

• Single indices past the end: s[9], s[21]

• Loop over a slice of a string
for c in s[2:6]:
 print(c, "!", sep="", end="")

String Slicing: Exercise

A. last_name[7:8]
B. last_name[6:-1]
C. last_name[-3:]
D. last_name[-2:8]

Which of these
evaluates to "in"?

0 1 2 3 4 5 6 7

W e h r w e i n

Ind
Val

str

String Slicing: Exercise

A. last_name[7:8]
B. last_name[6:-1]
C. last_name[-3:]
D. last_name[-2:8]

last_name = "Wehrwein"

Which of these
evaluates to "in"?

0 1 2 3 4 5 6 7

W e h r w e i n

Ind
Val

str

Strings are objects.
We’ve seen other objects before: turtles!

Turtles had methods:

t
turtle

data and methods

Strings are objects.
We’ve seen other objects before: turtles!

Turtles had methods:

t = turtle.Turtle()

t
turtle

data and methods

Strings are objects.
We’ve seen other objects before: turtles!

Turtles had methods:

t = turtle.Turtle()
t.forward(100)

t
turtle

data and methods

Strings are objects.
We’ve seen other objects before: turtles!

Turtles had methods:

t = turtle.Turtle()
t.forward(100)

turtle module

t
turtle

data and methods

Strings are objects.
We’ve seen other objects before: turtles!

Turtles had methods:

t = turtle.Turtle()
t.forward(100)

turtle module module function

(turtle constructor)

t
turtle

data and methods

Strings are objects.
We’ve seen other objects before: turtles!

Turtles had methods:

t = turtle.Turtle()
t.forward(100)

turtle module module function

(turtle constructor)

variable that refers to
a turtle object

t
turtle

data and methods

Strings are objects.
We’ve seen other objects before: turtles!

Turtles had methods:

t = turtle.Turtle()
t.forward(100)

turtle module module function

(turtle constructor)

method of a
turtle object

variable that refers to
a turtle object

t
turtle

data and methods

Strings are objects.

Strings are objects too - they also have
methods.

0 1 2 3 4 5 6 7

W e h r w e i n

Ind
Val

str

last_name = "Wehrwein"

last_name

Strings are objects.

Strings are objects too - they also have
methods.

0 1 2 3 4 5 6 7

W e h r w e i n

Ind
Val

str

last_name = "Wehrwein"

variable that refers to
a string object

last_name

Strings are objects.

Strings are objects too - they also have
methods.

0 1 2 3 4 5 6 7

W e h r w e i n

Ind
Val

str

last_name = "Wehrwein"

a string literalvariable that refers to
a string object

last_name

Strings are objects.

Strings are objects too - they also have
methods.

0 1 2 3 4 5 6 7

W e h r w e i n

Ind
Val

str

last_name = "Wehrwein"

a string literalvariable that refers to
a string object

last_name

last_name.upper()

Strings are objects.

Strings are objects too - they also have
methods.

0 1 2 3 4 5 6 7

W e h r w e i n

Ind
Val

str

last_name = "Wehrwein"

a string literalvariable that refers to
a string object

last_name

last_name.upper()

method of a
string object

Strings are objects.

Strings are objects too - they also have
methods.

0 1 2 3 4 5 6 7

W e h r w e i n

Ind
Val

str

last_name = "Wehrwein"

a string literalvariable that refers to
a string object

last_name

last_name.upper()

method of a
string object

"Wehrwein".upper()

Methods can be called directly
on the literal string, too:

Strings have many methods

Method Parameters Description
upper none Returns a string in all uppercase

lower none Returns a string in all lowercase

strip none Returns a string with the leading and trailing whitespace
removed

count item Returns the number of occurrences of item

replace old, new Replaces all occurrences of old substring with new

find item Returns the leftmost index where the substring item is
found, or -1 if not found

here are a few of them:

String methods: demo
upper, lower, count, replace, find, strip

String methods: demo
upper, lower, count, replace, find, strip

word = "Banana"
word.upper()
word.lower()
word.count("a")
word.replace("a", "A")

line = " snails are out "
line.find("s")
line.find("snails")
line.find("banana")
line.strip()
line.strip().upper()

word = "Bellingham"
word = word[:9] + word[9].upper()

String Methods: More
The textbook (Section 9.5) has a more complete
listing of string methods:

http://interactivepython.org/runestone/static/thinkcspy/Strings/StringMethods.html

The Python documentation has full details of the
str type and all its methods:

https://docs.python.org/3/library/stdtypes.html#str

You should know how to use upper, lower,
replace, and find.

http://interactivepython.org/runestone/static/thinkcspy/Strings/StringMethods.html
https://docs.python.org/3/library/stdtypes.html#str

Worksheet - Exercise 2
phrase = "WWU is in Bellingham"
phrase = phrase[:19] + phrase[19].upper()

def capitalize_last(in_str):
 """ Return a copy of in_str with its
 last letter capitalized.
 """

Write a function that capitalizes the last letter of any string:

Example:
capitalize_last(“Mix")) # => "MiX"

String Methods: Evaluation
Problem: write an expression to determine if a
string user_input contains the word "yes", with
any capitalization and with any amount of spaces.

user_input

String Methods: Evaluation
Problem: write an expression to determine if a
string user_input contains the word "yes", with
any capitalization and with any amount of spaces.

user_input

=> " Y eS "

String Methods
Problem: write an expression to determine if a
string user_input contains the word "yes", with
any capitalization and with any amount of spaces.

user_input.replace(" ", "")

=> "YeS"

String Methods
Problem: write an expression to determine if a
string user_input contains the word "yes", with
any capitalization and with any amount of spaces.

user_input.replace(" ", "")

=> "yes"

.lower()

String Methods
Problem: write an expression to determine if a
string user_input contains the word "yes", with
any capitalization and with any amount of spaces.

user_input.replace(" ", "")

=> "yes"

.lower()

dot (method call) operators are evaluated left-to-right!

String Methods
Problem: write an expression to determine if a
string user_input contains the word "yes", with
any capitalization and with any amount of spaces.

user_input.replace(" ", "").lower() == "yes"

=> " Y eS " .replace(" ", "").lower() == "yes"

=> "YeS".lower() == "yes"

=> "yes" == "yes"

dot (method call) operators are evaluated left-to-right!

String Methods
Problem: write an expression to determine if a
string user_input contains the word "yes", with
any capitalization and with any amount of spaces.

user_input.replace(" ", "").lower() == "yes"

=> " Y eS " .replace(" ", "").lower() == "yes"

=> "YeS".lower() == "yes"

=> "yes" == "yes"

=> True
dot (method call) operators are evaluated left-to-right!

Worksheet - Exercise 3
def remove_comments(string):
 """ Return a copy of string, but with
 all characters starting with the first
 # symbol removed. If there is no # in
 the string, return input unchanged.
 """

Method Description
s.upper() Returns s in all uppercase

s.lower() Returns s in all lowercase

s.strip() Returns s with the leading and trailing whitespace removed

s.count(t) Returns the number of occurrences of t in s

s.replace(u, v) Replaces all occurrences of substring u with v in s

s.find(t) Returns the leftmost index where the substring item is found, or -1 if not found

Do this without a loop!
For reference:

Operators on Strings
Familiar:

+ concatenation

* repetition

[] indexing, slicing

== equals

!= not equals

Operators on Strings
Familiar:

+ concatenation

* repetition

[] indexing, slicing

== equals

!= not equals

"a" + "b" => "ab"

Operators on Strings
Familiar:

+ concatenation

* repetition

[] indexing, slicing

== equals

!= not equals

"a" + "b" => "ab"

"ha" * 3 => "hahaha"

Operators on Strings
Familiar:

+ concatenation

* repetition

[] indexing, slicing

== equals

!= not equals

"a" + "b" => "ab"

"ha" * 3 => "hahaha"

"batman"[:3] => "bat"

Operators on Strings
Familiar:

+ concatenation

* repetition

[] indexing, slicing

== equals

!= not equals

"a" + "b" => "ab"

"ha" * 3 => "hahaha"

"batman"[:3] => "bat"

"antman" == "natman" => False

Operators on Strings
Familiar:

+ concatenation

* repetition

[] indexing, slicing

== equals

!= not equals

"a" + "b" => "ab"

"ha" * 3 => "hahaha"

"batman"[:3] => "bat"

"antman" != natman" => True

"antman" == "natman" => False

String operators

String operators
Unfamiliar, but intuitive:

String operators
Unfamiliar, but intuitive:

in  
 
 
 

String operators
Unfamiliar, but intuitive:

in  
 
 
 

"a" in "abc". # => True

String operators
Unfamiliar, but intuitive:

in  
 
 
 

"a" in "abc". # => True
"dab" in "abacadabra" # => True

String operators
Unfamiliar, but intuitive:

in  
 
 
 

"a" in "abc". # => True
"dab" in "abacadabra" # => True
"A" in "abate" # => False

String operators
Unfamiliar, but intuitive:

in  
 
 
 

"a" in "abc". # => True
"dab" in "abacadabra" # => True
"A" in "abate" # => False
"eye" in "team" # => False

String operators
Unfamiliar, but intuitive:

in  
 
 
 

not in: exactly what you think (opposite of in)

"a" in "abc". # => True
"dab" in "abacadabra" # => True
"A" in "abate" # => False
"eye" in "team" # => False

String operators

Inequality comparisons follow lexicographic ordering:

• Order based on the first character

• If tied, use the next character,

• and so on

much like in a dictionary

These are all True:

"a" < "b"
"ab" < "ac"
"a" < "aa"
"" < "a"

String operators
Familiar, but (possibly) unintuitive:

Inequality comparisons follow lexicographic ordering:

• Order based on the first character

• If tied, use the next character,

• and so on

much like in a dictionary

These are all True:

"a" < "b"
"ab" < "ac"
"a" < "aa"
"" < "a"

String operators
Familiar, but (possibly) unintuitive:

<, >

Inequality comparisons follow lexicographic ordering:

• Order based on the first character

• If tied, use the next character,

• and so on

much like in a dictionary

These are all True:

"a" < "b"
"ab" < "ac"
"a" < "aa"
"" < "a"

String operators
Familiar, but (possibly) unintuitive:

<, >

Inequality comparisons follow lexicographic ordering:

• Order based on the first character

• If tied, use the next character,

• and so on

much like in a dictionary

These are all True:

"a" < "b"
"ab" < "ac"
"a" < "aa"
"" < "a"

String operators
Familiar, but (possibly) unintuitive:

<, >

Inequality comparisons follow lexicographic ordering:

• Order based on the first character

• If tied, use the next character,

• and so on

much like in a dictionary

These are all True:

"a" < "b"
"ab" < "ac"
"a" < "aa"
"" < "a"

String operators
Familiar, but (a little) unintuitive:

<, >

Caveat: lexicographic ordering is case-sensitive, and ALL
upper-case characters come before ALL lower-case letters:

These are all True:

"A" < "a"
"Z" < "a"
"Jello" < "hello"

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Tie - next character

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Tie - next character

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Tie - next character

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Tie - next character

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

i > e, so "Bellingham" > "Bellevue"

Lexicographic Ordering
Example: "Bellingham" > "Bellevue"

"Bellingham"
"Bellevue

i > e, so "Bellingham" > "Bellevue"

Aside:

"Bell" < "Bellingham" => True

When all letters are tied, the shorter word comes first.

Lexicographic Ordering:
Aside

"?" < "!" # => ???

Lexicographic Ordering:
Aside

"?" < "!" # =>

The ord function takes a character and returns its
numerical (ASCII) code, which determines its ordering.

???

Lexicographic Ordering:
Aside

"?" < "!" # =>

The ord function takes a character and returns its
numerical (ASCII) code, which determines its ordering.

The chr function takes a numerical (ASCII) code and
returns the corresponding character.

???

Lexicographic Ordering:
Aside

"?" < "!" # =>

The ord function takes a character and returns its
numerical (ASCII) code, which determines its ordering.

The chr function takes a numerical (ASCII) code and
returns the corresponding character.

ord("?") # => 63
ord("!") # => 33

???

Lexicographic Ordering:
Aside

"?" < "!" # =>

The ord function takes a character and returns its
numerical (ASCII) code, which determines its ordering.

The chr function takes a numerical (ASCII) code and
returns the corresponding character.

ord("?") # => 63
ord("!") # => 33 "?" < "!" # => False

???

Lexicographic Ordering

ABCD: Which of the these evaluates to True?

A. "bat" > "rat"

B. "tap" < "bear"

C. "Jam" < "bet"

D. "STEAM" > "STEP!"

