
CSCI 141
Lecture 17


String Manipulation



Happenings
CS Mentors Present: GITHUB Pages Workshop
            Tuesday, November 5th 5:00 PM CF 165
 
Tech Talk: Pacific Northwest National Labs (PNNL)
            Tabling Wednesday, Nov 6th 10:00-3:30 PM CF 4th Floor Foyer
            Tech Talk Wednesday, Nov 6th 5:00-6:00 PM CF 115
 
ACM Hosts: Fast Enterprises
            Career Prep Presentation Wednesday, Nov 6th 6:00-7:00 PM CF 316
 
Group Advising Session for CS Premajors
            Thursday, November 7th 3:00-4:30 PM
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Announcements
• Midterm grades are out - see Canvas 

announcement for full details.

• Review your exam on Gradescope by Wednesday night for 
2 bonus points on your exam score

• If you do better on the final, it will replace your midterm 
grade.
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Feedback Survey Results
QOTD Review

Not helpful at all

Extremely helpful



What shouldn't change?

• QOTDs


• In-class demos


• Socrative

Common themes, approximately in order of frequency:



What should change?

• Reviewing the QOTD is helpful but takes too 
much time, so new material is rushed.


• A3 was too hard; I gave too little guidance.


• Demos are helpful, often more so than slides.


• You need more in-class practice, especially 
coding on paper.

Common themes, approximately in order of frequency:



What am I doing about it?

• Short term: Spend less time on the QOTD


• Short term experiment: Written explanations 
of QOTD


• Long term: Video explanations of QOTD

Reviewing the QOTD is helpful but takes 
too much time, so new material is rushed.



What am I doing about it?

• Short term: Friday's lecture was all about how 
to approach A4.


• Long term: Adjust A3 difficulty and give more 
tips for how to approach each problem.

A3 was too hard; I gave too little guidance.



What am I doing about it?

• Strive to make slides more concise, talk a little 
less, and allow time for:


• More frequent demos with more examples per demo.


• More in-class exercises, including on-paper coding.

Demos are helpful, often more so than slides. 

You need more in-class practice, especially coding on paper.



Other
• Many people don't like spending class time 

answering out-of-scope questions.


• Many people do not like taking CS exams 
on paper.


• Many people would like me to go over 
assignment solutions.



Goals
• Review what we know already about strings:


• the str type, + and * operators, len function


• Know how to iterate over tuples and strings using 
for loops


• Know how to index into a string


• Know how Python interprets negative indices into 
strings.


• Know how to use slicing to get substrings



QOTD
import math
def square(x):
    return x ** 2

def quadratic(a, b, c):
    disc = discriminant(a, b, c)
    return (-b + disc) / (2 * a)

def discriminant(a, b, c):
    b2 = square(b)
    return math.sqrt(b2 - 4 * a * c)

print(quadratic(4, 6, 2))

Which of the following are 
local variables belonging to 
the discriminant function?

x, a, b, c, disc, b2



Last time: tuples
• A tuple is a sequence of values, optionally 

enclosed in parens.


• You can “pack” and “unpack” them using 
assignment statements:

(1, 4, “Mufasa”)

v = (1, 4, "Mufasa") # "packing"

(a, b, c) = v # "unpacking"

(of any types!)



QOTD
Run the following code. If a line causes an 
error, skip it and continue execution. Which 
lines, if any, cause errors? 

1   a, b, c = 6, 4, 2
2   (z, x) = c, b
3   print((x, z))
4   v = (x, z, c)
5   print(v)
6   a, b = v



QOTD
What does line 5 print?

1   a, b, c = 6, 4, 2
2   (z, x) = c, b
3   print((x, z))
4   v = (x, z, c)
5   print(v)
6   a, b = v

A. (2, 4, 2) 
B. (2, 2, 4) 
C. (6, 4, 2) 
D. (4, 2, 2) 
E. (4, 4, 2) 



Tuples are sequences,
These two loops do the same thing:

for number in (1, 3):
    print(number, end=" ")

for number in [1, 3]:
    print(number, end=" ")

so they can be used in for loops just like lists and ranges.

fun fact:



Tuples are sequences,
These two loops do the same thing:

for number in (1, 3):
    print(number, end=" ")

for number in [1, 3]:
    print(number, end=" ")

so they can be used in for loops just like lists and ranges.

fun fact:

Exercise: write a for loop that uses a range to print the same thing. 



Today: Strings
Don’t we already know about strings?
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Today: Strings
Don’t we already know about strings?

type("hello")  

print("Hello")  

"Hello" + “World"  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# => <class ‘str’>

 # prints Hello to the console

# => “HelloWorld”



Today: Strings
Don’t we already know about strings?

type("hello")  

print("Hello")  

"Hello" + “World"  

len("abc")  

# => <class ‘str’>

 # prints Hello to the console

# => “HelloWorld”

# => 3



Today: Strings
Don’t we already know about strings?

type("hello")  

print("Hello")  

"Hello" + “World"  

len("abc")  

"na" * 16 + " Batman!"

# => <class ‘str’>

 # prints Hello to the console

# => “HelloWorld”

# => 3



Today: Strings
Don’t we already know about strings?

type("hello")  

print("Hello")  

"Hello" + “World"  

len("abc")  

"na" * 16 + " Batman!"

# => <class ‘str’>

 # prints Hello to the console

# => “HelloWorld”

# => …

# => 3



Today: Strings
Don’t we already know about strings?

type("hello")  

print("Hello")  

"Hello" + “World"  

len("abc")  

"na" * 16 + " Batman!"

# => <class ‘str’>

 # prints Hello to the console

# => “HelloWorld”

# => … "nananananananananananananananana Batman!"

# => 3



Strings: What else is there?
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Strings: What else is there?
def house_number(address_line):
    """ Return the house number portion of 
        the given address line.
        Examples:
            house_number("1600 Pennsylvania Ave")
              => 1600
            house_number("221B Baker St")
              => 221
    """



Strings: What else is there?
def house_number(address_line):
    """ Return the house number portion of 
        the given address line.
        Examples:
            house_number("1600 Pennsylvania Ave")
              => 1600
            house_number("221B Baker St")
              => 221
    """
    # ????
    return result   



Strings: What else is there?
def remove_comments(string):
    """ Return a copy of string, but with
        all characters starting with and following
        the first instance of ‘#’ emoved. If there
        is no # in the string, return input unchanged.
    """



Strings: What else is there?

    # ????

def remove_comments(string):
    """ Return a copy of string, but with
        all characters starting with and following
        the first instance of ‘#’ emoved. If there
        is no # in the string, return input unchanged.
    """



Strings: What else is there?

    # ????
    return result   

def remove_comments(string):
    """ Return a copy of string, but with
        all characters starting with and following
        the first instance of ‘#’ emoved. If there
        is no # in the string, return input unchanged.
    """



Strings are sequences,
Check this out:
for letter in "Bellingham":
    print(letter, "-", sep="", end="")

so they can be used in for loops just like lists and ranges.

fun fact:
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fun fact:

Demo?



Strings are sequences,
Check this out:
for letter in "Bellingham":
    print(letter, "-", sep="", end="")

so they can be used in for loops just like lists and ranges.

fun fact:



Strings are sequences,
Check this out:
for letter in "Bellingham":
    print(letter, "-", sep="", end="")

so they can be used in for loops just like lists and ranges.

What does this print?

A. Bellingham
B. B-e-l-l-i-n-g-h-a-m
C. -B-e-l-l-i-n-g-h-a-m
D. B-e-l-l-i-n-g-h-a-m-

fun fact:



Exercise (worksheet #1)
Write a function that prints a string with all 
vowels removed.
def remove_vowels(string):
    """ Print string, but with no vowels.
        Don't count y as a vowel. """



Exercise (worksheet #1)
Write a function that prints a string with all 
vowels removed.
def remove_vowels(string):
    """ Print string, but with no vowels.
        Don't count y as a vowel. """

Possible modification: Return the result instead of printing it.



Indexing into Strings
Strings are collections of individual characters.

We can get access to an individual character by index.
outlook = “Winter is coming”

How is this stored in memory?
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outlook = “Winter is coming”

How is this stored in memory?
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W i n t e r i s c o m i n g

Index:
Value:

str
outlook

(just smaller strings!)
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Index:
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Indices in Python begin at 0.
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(just smaller strings!)
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Index:
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str
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Index:
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str
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Indexing into Strings
Strings are collections of individual characters.

We can get access to an individual character by index.
outlook = “Winter is coming”

How is this stored in memory?

outlook[0] # => "W" 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

W i n t e r i s c o m i n g

Index:
Value:

str

Indices in Python begin at 0.Syntax:

outlook

outlook[4] # => "e" 

Spaces are characters too!

(just smaller strings!)



Indexing into Strings
Strings are collections of individual characters.

We can get access to an individual character by index.
outlook = “Winter is coming”

How is this stored in memory?

outlook[0] # => "W" 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

W i n t e r i s c o m i n g

Index:
Value:

str

Indices in Python begin at 0.Syntax:

outlook

outlook[4] # => "e" 

Spaces are characters too!

outlook[6] # => " " 

(just smaller strings!)



Indexing into Strings

Assume s is a variable that refers to the above string object.

How would I access the letter 'r'? 

A. s[5]
B. s(5)
C. s[6]
D. s(6)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

W i n t e r i s c o m i n g

Index:
Value:



Indexing into Strings

What is the index of the last character of a string s?

A. len(s) - 1
B. len(s)
C. len(s) + 1
D. 42

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

W i n t e r i s c o m i n g

Index:
Value:

(not the specific string above - this should work for any string)



A consequence of indexing - 
Another way to loop through strings:

is equivalent to

for letter in a_string:
    print(letter, "-", sep="", end="")

for i in range(len(a_string)):
    print(a_string[i], "-", sep="", end="")



Negative indices count backwards from len(s):

Nifty Python Feature: 
Negative Indices

Index:

Also Index:



Negative indices count backwards from len(s):

Nifty Python Feature: 
Negative Indices

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

W i n t e r i s c o m i n g
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Negative indices count backwards from len(s):

Nifty Python Feature: 
Negative Indices

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Two possible ways to remember how this works:

Index:

Also Index:



Negative indices count backwards from len(s):

Nifty Python Feature: 
Negative Indices

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

W i n t e r i s c o m i n g

-16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

a_string[-5]

is equivalent to

a_string[len(a_string)-5] 

Two possible ways to remember how this works:

Index:

Also Index:



Negative indices count backwards from len(s):

Nifty Python Feature: 
Negative Indices

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

W i n t e r i s c o m i n g

-16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

a_string[-5]

is equivalent to

a_string[len(a_string)-5] 

-1 is always the last 
character, and indices 
count backwards from 
there. 

Two possible ways to remember how this works:

Index:

Also Index:



Negative Indices!

A. a = 1  
b = 5  

B. a = 1  
b = 7

C. a = -8  
b = -4  

D. a = -2  
b =  6

For which assignment of a and b 
does the above not print True?



Negative Indices!

A. a = 1  
b = 5  

B. a = 1  
b = 7

last_name = "wehrwein"

C. a = -8  
b = -4  

D. a = -2  
b =  6

For which assignment of a and b 
does the above not print True?



Negative Indices!

A. a = 1  
b = 5  

B. a = 1  
b = 7

last_name = "wehrwein"

C. a = -8  
b = -4  

D. a = -2  
b =  6

For which assignment of a and b 
does the above not print True?



Negative Indices!

A. a = 1  
b = 5  

B. a = 1  
b = 7

last_name = "wehrwein"

print(last_name[a] == last_name[b])

C. a = -8  
b = -4  

D. a = -2  
b =  6

For which assignment of a and b 
does the above not print True?



Negative Indices!

A. a = 1  
b = 5  

B. a = 1  
b = 7

last_name = "wehrwein"

print(last_name[a] == last_name[b])

C. a = -8  
b = -4  

D. a = -2  
b =  6

For which assignment of a and b 
does the above not print True?



Indexing

is equivalent to

for letter in a_string:
    print(letter, end="")

for i in range(len(a_string)):
    print(a_string[i], end="")

gives us other ways to loop through strings:

and also
i = 0
while i < len(a_string):
    print(a_string[i], end="")
    i += 1



Exercise (worksheet #2)
def remove_comments(string):
    """ Return a copy of string, but with
        all characters starting with and following
        the first instance of ‘#’ emoved. If there
        is no # in the string, return input unchanged.
    """

# Example:

remove_comments("a = b # assign b to a"))
# => "a = b "



Exercise (worksheet #2)
def remove_comments(string):
    """ Return a copy of string, but with
        all characters starting with and following
        the first instance of ‘#’ emoved. If there
        is no # in the string, return input unchanged.
    """

Hint: use a while loop!

# Example:

remove_comments("a = b # assign b to a"))
# => "a = b "



Slicing: indexing substrings
alph = "abcdefghij"
alph[0] # => "a"
alph[4] # => "e"  

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

string[start:end]

just like the range function: 
the end index is not included

Slicing syntax:
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Ind
Val

str

string[start:end]

1 + index of last character

just like the range function: 
the end index is not included

Slicing syntax:
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alph[4] # => "e"  

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j
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Slicing: indexing substrings
alph = "abcdefghij"
alph[0] # => "a"
alph[4] # => "e"  

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

alph[0:5] # => “abcde"

string[start:end]

index of first character 1 + index of last character

just like the range function: 
the end index is not included

Slicing syntax:



Slicing: indexing substrings
alph = "abcdefghij"
alph[0] # => "a"
alph[4] # => "e"  

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

alph[0:5] # => “abcde"

alph[0:10] # => "abcdefghij" 

string[start:end]

index of first character 1 + index of last character

just like the range function: 
the end index is not included

Slicing syntax:



Slicing: indexing substrings
alph = "abcdefghij"
alph[0] # => "a"
alph[4] # => "e"  

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

alph[0:5] # => “abcde"

alph[0:10] # => "abcdefghij" 

alph[5:-2]

string[start:end]

index of first character 1 + index of last character

just like the range function: 
the end index is not included

Slicing syntax:



Slicing: indexing substrings
alph = "abcdefghij"
alph[0] # => "a"
alph[4] # => "e"  

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

alph[0:5] # => “abcde"

alph[0:10] # => "abcdefghij" 

alph[5:-2] # => "fgh"

string[start:end]

index of first character 1 + index of last character

just like the range function: 
the end index is not included

Slicing syntax:



Slicing: indexing substrings
alph = "abcdefghij"

 

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

string[start:end]

index of first character 1 + index of last character

Slicing syntax:



Slicing: indexing substrings
alph = "abcdefghij"

 

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

string[start:end]

index of first character 1 + index of last character

Slicing syntax:

If omitted, start

defaults to 0



Slicing: indexing substrings
alph = "abcdefghij"

 

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

string[start:end]

index of first character 1 + index of last character

Slicing syntax:

If omitted, start

defaults to 0

If omitted, end

defaults to len(string)



Slicing: indexing substrings
alph = "abcdefghij"

 

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

string[start:end]

index of first character 1 + index of last character

Slicing syntax:

If omitted, start

defaults to 0

If omitted, end

defaults to len(string)

alph[:4] # => “abcd"



Slicing: indexing substrings
alph = "abcdefghij"

 

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

string[start:end]

index of first character 1 + index of last character

Slicing syntax:

If omitted, start

defaults to 0

If omitted, end

defaults to len(string)

alph[:4] # => “abcd"

alph[5:] # => "fghij"



String Slicing: Exercise

A. last_name[7:8]
B. last_name[6:-1]
C. last_name[-3:]
D. last_name[-2:8]

Which of these 
evaluates to "in"?

0 1 2 3 4 5 6 7

W e h r w e i n

Ind
Val

str



String Slicing: Exercise

A. last_name[7:8]
B. last_name[6:-1]
C. last_name[-3:]
D. last_name[-2:8]

last_name = "Wehrwein"

Which of these 
evaluates to "in"?

0 1 2 3 4 5 6 7

W e h r w e i n

Ind
Val

str




