
CSCI 141
Lecture 17

String Manipulation

Happenings
CS Mentors Present: GITHUB Pages Workshop
 Tuesday, November 5th 5:00 PM CF 165

Tech Talk: Pacific Northwest National Labs (PNNL)
 Tabling Wednesday, Nov 6th 10:00-3:30 PM CF 4th Floor Foyer
 Tech Talk Wednesday, Nov 6th 5:00-6:00 PM CF 115

ACM Hosts: Fast Enterprises
 Career Prep Presentation Wednesday, Nov 6th 6:00-7:00 PM CF 316

Group Advising Session for CS Premajors
 Thursday, November 7th 3:00-4:30 PM

Announcements

Announcements
• Midterm grades are out - see Canvas

announcement for full details.

Announcements
• Midterm grades are out - see Canvas

announcement for full details.

• Review your exam on Gradescope by Wednesday night for
2 bonus points on your exam score

Announcements
• Midterm grades are out - see Canvas

announcement for full details.

• Review your exam on Gradescope by Wednesday night for
2 bonus points on your exam score

• If you do better on the final, it will replace your midterm
grade.

Feedback Survey Results

Feedback Survey Results
Lecture Pace

Feedback Survey Results
QOTD Review

Not helpful at all

Extremely helpful

What shouldn't change?

• QOTDs

• In-class demos

• Socrative

Common themes, approximately in order of frequency:

What should change?

• Reviewing the QOTD is helpful but takes too
much time, so new material is rushed.

• A3 was too hard; I gave too little guidance.

• Demos are helpful, often more so than slides.

• You need more in-class practice, especially
coding on paper.

Common themes, approximately in order of frequency:

What am I doing about it?

• Short term: Spend less time on the QOTD

• Short term experiment: Written explanations
of QOTD

• Long term: Video explanations of QOTD

Reviewing the QOTD is helpful but takes
too much time, so new material is rushed.

What am I doing about it?

• Short term: Friday's lecture was all about how
to approach A4.

• Long term: Adjust A3 difficulty and give more
tips for how to approach each problem.

A3 was too hard; I gave too little guidance.

What am I doing about it?

• Strive to make slides more concise, talk a little
less, and allow time for:

• More frequent demos with more examples per demo.

• More in-class exercises, including on-paper coding.

Demos are helpful, often more so than slides. 

You need more in-class practice, especially coding on paper.

Other
• Many people don't like spending class time

answering out-of-scope questions.

• Many people do not like taking CS exams
on paper.

• Many people would like me to go over
assignment solutions.

Goals
• Review what we know already about strings:

• the str type, + and * operators, len function

• Know how to iterate over tuples and strings using
for loops

• Know how to index into a string

• Know how Python interprets negative indices into
strings.

• Know how to use slicing to get substrings

QOTD
import math
def square(x):
 return x ** 2

def quadratic(a, b, c):
 disc = discriminant(a, b, c)
 return (-b + disc) / (2 * a)

def discriminant(a, b, c):
 b2 = square(b)
 return math.sqrt(b2 - 4 * a * c)

print(quadratic(4, 6, 2))

Which of the following are
local variables belonging to
the discriminant function?

x, a, b, c, disc, b2

Last time: tuples
• A tuple is a sequence of values, optionally

enclosed in parens.

• You can “pack” and “unpack” them using
assignment statements:

(1, 4, “Mufasa”)

v = (1, 4, "Mufasa") # "packing"

(a, b, c) = v # "unpacking"

(of any types!)

QOTD
Run the following code. If a line causes an
error, skip it and continue execution. Which
lines, if any, cause errors?

1 a, b, c = 6, 4, 2
2 (z, x) = c, b
3 print((x, z))
4 v = (x, z, c)
5 print(v)
6 a, b = v

QOTD
What does line 5 print?

1 a, b, c = 6, 4, 2
2 (z, x) = c, b
3 print((x, z))
4 v = (x, z, c)
5 print(v)
6 a, b = v

A. (2, 4, 2)
B. (2, 2, 4)
C. (6, 4, 2)
D. (4, 2, 2)
E. (4, 4, 2)

Tuples are sequences,
These two loops do the same thing:

for number in (1, 3):
 print(number, end=" ")

for number in [1, 3]:
 print(number, end=" ")

so they can be used in for loops just like lists and ranges.

fun fact:

Tuples are sequences,
These two loops do the same thing:

for number in (1, 3):
 print(number, end=" ")

for number in [1, 3]:
 print(number, end=" ")

so they can be used in for loops just like lists and ranges.

fun fact:

Exercise: write a for loop that uses a range to print the same thing.

Today: Strings
Don’t we already know about strings?

Today: Strings
Don’t we already know about strings?

type("hello")  

Today: Strings
Don’t we already know about strings?

type("hello")   # => <class ‘str’>

Today: Strings
Don’t we already know about strings?

type("hello")  

print("Hello")  

=> <class ‘str’>

Today: Strings
Don’t we already know about strings?

type("hello")  

print("Hello")  

=> <class ‘str’>

 # prints Hello to the console

Today: Strings
Don’t we already know about strings?

type("hello")  

print("Hello")  

"Hello" + “World"  

=> <class ‘str’>

 # prints Hello to the console

Today: Strings
Don’t we already know about strings?

type("hello")  

print("Hello")  

"Hello" + “World"  

=> <class ‘str’>

 # prints Hello to the console

=> “HelloWorld”

Today: Strings
Don’t we already know about strings?

type("hello")  

print("Hello")  

"Hello" + “World"  

len("abc")  

=> <class ‘str’>

 # prints Hello to the console

=> “HelloWorld”

Today: Strings
Don’t we already know about strings?

type("hello")  

print("Hello")  

"Hello" + “World"  

len("abc")  

=> <class ‘str’>

 # prints Hello to the console

=> “HelloWorld”

=> 3

Today: Strings
Don’t we already know about strings?

type("hello")  

print("Hello")  

"Hello" + “World"  

len("abc")  

"na" * 16 + " Batman!"

=> <class ‘str’>

 # prints Hello to the console

=> “HelloWorld”

=> 3

Today: Strings
Don’t we already know about strings?

type("hello")  

print("Hello")  

"Hello" + “World"  

len("abc")  

"na" * 16 + " Batman!"

=> <class ‘str’>

 # prints Hello to the console

=> “HelloWorld”

=> …

=> 3

Today: Strings
Don’t we already know about strings?

type("hello")  

print("Hello")  

"Hello" + “World"  

len("abc")  

"na" * 16 + " Batman!"

=> <class ‘str’>

 # prints Hello to the console

=> “HelloWorld”

=> … "nananananananananananananananana Batman!"

=> 3

Strings: What else is there?

Strings: What else is there?
def house_number(address_line):

Strings: What else is there?
def house_number(address_line):
 """ Return the house number portion of
 the given address line.

Strings: What else is there?
def house_number(address_line):
 """ Return the house number portion of
 the given address line.
 Examples:

Strings: What else is there?
def house_number(address_line):
 """ Return the house number portion of
 the given address line.
 Examples:
 house_number("1600 Pennsylvania Ave")
 => 1600

Strings: What else is there?
def house_number(address_line):
 """ Return the house number portion of
 the given address line.
 Examples:
 house_number("1600 Pennsylvania Ave")
 => 1600
 house_number("221B Baker St")
 => 221
 """

Strings: What else is there?
def house_number(address_line):
 """ Return the house number portion of
 the given address line.
 Examples:
 house_number("1600 Pennsylvania Ave")
 => 1600
 house_number("221B Baker St")
 => 221
 """
 # ????
 return result

Strings: What else is there?
def remove_comments(string):
 """ Return a copy of string, but with
 all characters starting with and following
 the first instance of ‘#’ emoved. If there
 is no # in the string, return input unchanged.
 """

Strings: What else is there?

 # ????

def remove_comments(string):
 """ Return a copy of string, but with
 all characters starting with and following
 the first instance of ‘#’ emoved. If there
 is no # in the string, return input unchanged.
 """

Strings: What else is there?

 # ????
 return result

def remove_comments(string):
 """ Return a copy of string, but with
 all characters starting with and following
 the first instance of ‘#’ emoved. If there
 is no # in the string, return input unchanged.
 """

Strings are sequences,
Check this out:
for letter in "Bellingham":
 print(letter, "-", sep="", end="")

so they can be used in for loops just like lists and ranges.

fun fact:

Strings are sequences,
Check this out:
for letter in "Bellingham":
 print(letter, "-", sep="", end="")

so they can be used in for loops just like lists and ranges.

fun fact:

Demo?

Strings are sequences,
Check this out:
for letter in "Bellingham":
 print(letter, "-", sep="", end="")

so they can be used in for loops just like lists and ranges.

fun fact:

Strings are sequences,
Check this out:
for letter in "Bellingham":
 print(letter, "-", sep="", end="")

so they can be used in for loops just like lists and ranges.

What does this print?

A. Bellingham
B. B-e-l-l-i-n-g-h-a-m
C. -B-e-l-l-i-n-g-h-a-m
D. B-e-l-l-i-n-g-h-a-m-

fun fact:

Exercise (worksheet #1)
Write a function that prints a string with all
vowels removed.
def remove_vowels(string):
 """ Print string, but with no vowels.
 Don't count y as a vowel. """

Exercise (worksheet #1)
Write a function that prints a string with all
vowels removed.
def remove_vowels(string):
 """ Print string, but with no vowels.
 Don't count y as a vowel. """

Possible modification: Return the result instead of printing it.

Indexing into Strings
Strings are collections of individual characters.

We can get access to an individual character by index.
outlook = “Winter is coming”

How is this stored in memory?

Indexing into Strings
Strings are collections of individual characters.

We can get access to an individual character by index.
outlook = “Winter is coming”

How is this stored in memory?

(just smaller strings!)

Indexing into Strings
Strings are collections of individual characters.

We can get access to an individual character by index.
outlook = “Winter is coming”

How is this stored in memory?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

W i n t e r i s c o m i n g

Index:
Value:

str
outlook

(just smaller strings!)

Indexing into Strings
Strings are collections of individual characters.

We can get access to an individual character by index.
outlook = “Winter is coming”

How is this stored in memory?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

W i n t e r i s c o m i n g

Index:
Value:

str

Indices in Python begin at 0.

outlook

(just smaller strings!)

Indexing into Strings
Strings are collections of individual characters.

We can get access to an individual character by index.
outlook = “Winter is coming”

How is this stored in memory?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

W i n t e r i s c o m i n g

Index:
Value:

str

Indices in Python begin at 0.Syntax:

outlook

(just smaller strings!)

Indexing into Strings
Strings are collections of individual characters.

We can get access to an individual character by index.
outlook = “Winter is coming”

How is this stored in memory?

outlook[0] # => "W"

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

W i n t e r i s c o m i n g

Index:
Value:

str

Indices in Python begin at 0.Syntax:

outlook

(just smaller strings!)

Indexing into Strings
Strings are collections of individual characters.

We can get access to an individual character by index.
outlook = “Winter is coming”

How is this stored in memory?

outlook[0] # => "W"

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

W i n t e r i s c o m i n g

Index:
Value:

str

Indices in Python begin at 0.Syntax:

outlook

outlook[4] # => "e"

(just smaller strings!)

Indexing into Strings
Strings are collections of individual characters.

We can get access to an individual character by index.
outlook = “Winter is coming”

How is this stored in memory?

outlook[0] # => "W"

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

W i n t e r i s c o m i n g

Index:
Value:

str

Indices in Python begin at 0.Syntax:

outlook

outlook[4] # => "e"

Spaces are characters too!

(just smaller strings!)

Indexing into Strings
Strings are collections of individual characters.

We can get access to an individual character by index.
outlook = “Winter is coming”

How is this stored in memory?

outlook[0] # => "W"

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

W i n t e r i s c o m i n g

Index:
Value:

str

Indices in Python begin at 0.Syntax:

outlook

outlook[4] # => "e"

Spaces are characters too!

outlook[6] # => " "

(just smaller strings!)

Indexing into Strings

Assume s is a variable that refers to the above string object.

How would I access the letter 'r'? 

A. s[5]
B. s(5)
C. s[6]
D. s(6)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

W i n t e r i s c o m i n g

Index:
Value:

Indexing into Strings

What is the index of the last character of a string s?

A. len(s) - 1
B. len(s)
C. len(s) + 1
D. 42

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

W i n t e r i s c o m i n g

Index:
Value:

(not the specific string above - this should work for any string)

A consequence of indexing -
Another way to loop through strings:

is equivalent to

for letter in a_string:
 print(letter, "-", sep="", end="")

for i in range(len(a_string)):
 print(a_string[i], "-", sep="", end="")

Negative indices count backwards from len(s):

Nifty Python Feature:
Negative Indices

Index:

Also Index:

Negative indices count backwards from len(s):

Nifty Python Feature:
Negative Indices

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

W i n t e r i s c o m i n g

-16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

Index:

Also Index:

Negative indices count backwards from len(s):

Nifty Python Feature:
Negative Indices

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

W i n t e r i s c o m i n g

-16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

Two possible ways to remember how this works:

Index:

Also Index:

Negative indices count backwards from len(s):

Nifty Python Feature:
Negative Indices

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

W i n t e r i s c o m i n g

-16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

a_string[-5]

is equivalent to

a_string[len(a_string)-5]

Two possible ways to remember how this works:

Index:

Also Index:

Negative indices count backwards from len(s):

Nifty Python Feature:
Negative Indices

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

W i n t e r i s c o m i n g

-16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

a_string[-5]

is equivalent to

a_string[len(a_string)-5]

-1 is always the last
character, and indices
count backwards from
there.

Two possible ways to remember how this works:

Index:

Also Index:

Negative Indices!

A. a = 1  
b = 5  

B. a = 1  
b = 7

C. a = -8  
b = -4  

D. a = -2  
b = 6

For which assignment of a and b
does the above not print True?

Negative Indices!

A. a = 1  
b = 5  

B. a = 1  
b = 7

last_name = "wehrwein"

C. a = -8  
b = -4  

D. a = -2  
b = 6

For which assignment of a and b
does the above not print True?

Negative Indices!

A. a = 1  
b = 5  

B. a = 1  
b = 7

last_name = "wehrwein"

C. a = -8  
b = -4  

D. a = -2  
b = 6

For which assignment of a and b
does the above not print True?

Negative Indices!

A. a = 1  
b = 5  

B. a = 1  
b = 7

last_name = "wehrwein"

print(last_name[a] == last_name[b])

C. a = -8  
b = -4  

D. a = -2  
b = 6

For which assignment of a and b
does the above not print True?

Negative Indices!

A. a = 1  
b = 5  

B. a = 1  
b = 7

last_name = "wehrwein"

print(last_name[a] == last_name[b])

C. a = -8  
b = -4  

D. a = -2  
b = 6

For which assignment of a and b
does the above not print True?

Indexing

is equivalent to

for letter in a_string:
 print(letter, end="")

for i in range(len(a_string)):
 print(a_string[i], end="")

gives us other ways to loop through strings:

and also
i = 0
while i < len(a_string):
 print(a_string[i], end="")
 i += 1

Exercise (worksheet #2)
def remove_comments(string):
 """ Return a copy of string, but with
 all characters starting with and following
 the first instance of ‘#’ emoved. If there
 is no # in the string, return input unchanged.
 """

Example:

remove_comments("a = b # assign b to a"))
=> "a = b "

Exercise (worksheet #2)
def remove_comments(string):
 """ Return a copy of string, but with
 all characters starting with and following
 the first instance of ‘#’ emoved. If there
 is no # in the string, return input unchanged.
 """

Hint: use a while loop!

Example:

remove_comments("a = b # assign b to a"))
=> "a = b "

Slicing: indexing substrings
alph = "abcdefghij"
alph[0] # => "a"
alph[4] # => "e"

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

string[start:end]

just like the range function:
the end index is not included

Slicing syntax:

Slicing: indexing substrings
alph = "abcdefghij"
alph[0] # => "a"
alph[4] # => "e"

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

string[start:end]

1 + index of last character

just like the range function:
the end index is not included

Slicing syntax:

Slicing: indexing substrings
alph = "abcdefghij"
alph[0] # => "a"
alph[4] # => "e"

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

string[start:end]

index of first character 1 + index of last character

just like the range function:
the end index is not included

Slicing syntax:

Slicing: indexing substrings
alph = "abcdefghij"
alph[0] # => "a"
alph[4] # => "e"

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

alph[0:5] # => “abcde"

string[start:end]

index of first character 1 + index of last character

just like the range function:
the end index is not included

Slicing syntax:

Slicing: indexing substrings
alph = "abcdefghij"
alph[0] # => "a"
alph[4] # => "e"

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

alph[0:5] # => “abcde"

alph[0:10] # => "abcdefghij"

string[start:end]

index of first character 1 + index of last character

just like the range function:
the end index is not included

Slicing syntax:

Slicing: indexing substrings
alph = "abcdefghij"
alph[0] # => "a"
alph[4] # => "e"

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

alph[0:5] # => “abcde"

alph[0:10] # => "abcdefghij"

alph[5:-2]

string[start:end]

index of first character 1 + index of last character

just like the range function:
the end index is not included

Slicing syntax:

Slicing: indexing substrings
alph = "abcdefghij"
alph[0] # => "a"
alph[4] # => "e"

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

alph[0:5] # => “abcde"

alph[0:10] # => "abcdefghij"

alph[5:-2] # => "fgh"

string[start:end]

index of first character 1 + index of last character

just like the range function:
the end index is not included

Slicing syntax:

Slicing: indexing substrings
alph = "abcdefghij"

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

string[start:end]

index of first character 1 + index of last character

Slicing syntax:

Slicing: indexing substrings
alph = "abcdefghij"

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

string[start:end]

index of first character 1 + index of last character

Slicing syntax:

If omitted, start

defaults to 0

Slicing: indexing substrings
alph = "abcdefghij"

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

string[start:end]

index of first character 1 + index of last character

Slicing syntax:

If omitted, start

defaults to 0

If omitted, end

defaults to len(string)

Slicing: indexing substrings
alph = "abcdefghij"

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

string[start:end]

index of first character 1 + index of last character

Slicing syntax:

If omitted, start

defaults to 0

If omitted, end

defaults to len(string)

alph[:4] # => “abcd"

Slicing: indexing substrings
alph = "abcdefghij"

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

Ind
Val

str

string[start:end]

index of first character 1 + index of last character

Slicing syntax:

If omitted, start

defaults to 0

If omitted, end

defaults to len(string)

alph[:4] # => “abcd"

alph[5:] # => "fghij"

String Slicing: Exercise

A. last_name[7:8]
B. last_name[6:-1]
C. last_name[-3:]
D. last_name[-2:8]

Which of these
evaluates to "in"?

0 1 2 3 4 5 6 7

W e h r w e i n

Ind
Val

str

String Slicing: Exercise

A. last_name[7:8]
B. last_name[6:-1]
C. last_name[-3:]
D. last_name[-2:8]

last_name = "Wehrwein"

Which of these
evaluates to "in"?

0 1 2 3 4 5 6 7

W e h r w e i n

Ind
Val

str

