
CSCI 141
Lecture 16

How to approach A4, or:

Managing Complexity with Functions

Tuples

Announcements

Announcements
• Midterm grades should be out by the end of

the weekend.

Announcements
• Midterm grades should be out by the end of

the weekend.

• I'm working my way through the mid-quarter
eval feedback. I'll discuss findings on Monday.

Goals
• Understand the task assigned in A4 and how to

approach it.

• Understand how to use function composition
to express complicated computations as
clearly and simply as possible.

• Understand the basic usage of tuples:

• using tuples to return multiple values from a function

• packing and unpacking via the assignment operator

First: An Apology

Last lecture, I told you a lie.

First: An Apology

Last lecture, I told you a big lie.

If multiple variables exist with
the same name, use the

innermost one available.

How to Execute Function Calls
1. Evaluate all arguments

2. Draw a local "box" inside
the current "box"

3. Assign argument values to
parameter variables in the
local box

4. Execute the function body

5. When done, erase the local
box

If multiple variables exist with
the same name, use* the
innermost one available.

1. Evaluate all arguments

2. Draw a local "box" inside
the global one*

3. Assign argument values to
parameter variables in the
local box

4. Execute the function body

5. When done, erase the local
box

How to Execute Function Calls

If multiple variables exist with
the same name, use* the
innermost one available.

1. Evaluate all arguments

2. Draw a local "box" inside
the global one*

3. Assign argument values to
parameter variables in the
local box

4. Execute the function body

5. When done, erase the local
box

How to Execute Function Calls

*Global variables can be read but not
modified unless you mark them as

such using global var_name at the
top of the function definition.

In this course, we will never modify
global variables from inside a function

and will only rarely read them.

If multiple variables exist with
the same name, use* the
innermost one available.

1. Evaluate all arguments

2. Draw a local "box" inside
the global one*

3. Assign argument values to
parameter variables in the
local box

4. Execute the function body

5. When done, erase the local
box

How to Execute Function Calls

*Unless the function is defined
inside another function or class.
This won't happen in this course.

*Global variables can be read but not
modified unless you mark them as

such using global var_name at the
top of the function definition.

In this course, we will never modify
global variables from inside a function

and will only rarely read them.

How did Scott get this wrong?

How did Scott get this wrong?
No excuses! Shame!

How did Scott get this wrong?

How did Scott get this wrong?

How did Scott get this wrong?
Your professor was
so accustomed to
doing what you
should that he lost
track of the details
of what you could.

How did Scott get this wrong?

Your professor was
so accustomed to
doing what you
should that he lost
track of the details
of what you could.

How did Scott get this wrong?
The specification of the
Python language says:

• You can access

variables that are not
local to the function.

Conventional software
engineering wisdom says:

• You should not access

variables that are not
local to the function.

Your professor was
so accustomed to
doing what you
should that he lost
track of the details
of what you could.

How did Scott get this wrong?
The specification of the
Python language says:

• You can access

variables that are not
local to the function.

Conventional software
engineering wisdom says:

• You should not access

variables that are not
local to the function.

If your function needs a piece of data, that
data should be passed in as an argument.

Bottom line:

Your professor was
so accustomed to
doing what you
should that he lost
track of the details
of what you could.

Why is accessing globals bad?

If your function needs a piece of data, that
data should be passed in as an argument.

Bottom line:

• The function's behavior becomes
unpredictable, because it depends on
global state.

• "Pure" functions are ideal: the output is fully
determined by the inputs.

QOTD
Which of the following belongs in a function's docstring?
Select all that apply.

• Preconditions

• Postconditions

• The steps that the function takes to accomplish its task

• Information about any side-effects the function has

• Information about what arguments the function takes

To execute a function call:

1. Evaluate all arguments

2. Draw a local "box" inside
the global one

3. Assign argument values to
parameter variables in the
local box

4. Execute the function body

5. When done, erase the local
box

One more modification

We now know how to return a
value - what does Python do
with it?

To execute a function call:

1. Evaluate all arguments

2. Draw a local "box" inside
the global one

3. Assign argument values to
parameter variables in the
local box

4. Execute the function body

5. When done, erase the local
box

6. Replace the function call
with its return value

One more modification

We now know how to return a
value - what does Python do
with it?

QOTD
What does this
program print?

x = 4

def f(x):
 return 3 * x

def g(x):
 return x + 2

print(f(g(x)))
print(g(f(x)))

To execute a function call:

1. Evaluate all arguments

2. Draw a local "box" inside
the global one

3. Assign argument values to
parameter variables in the
local box

4. Execute the function body

5. When done, erase the local
box

6. Replace the function call
with its return value

A4
Your task:
Draw this.

A4: Pseudocode
 # Let p be a random point in the window
 # loop 10000 times:
 # c = a random corner of the triangle
 # m = the midpoint between p and c
 # choose a color for m
 # color the pixel at m
 # p=m

A4: Pseudocode
 # Let p be a random point in the window
 # loop 10000 times:
 # c = a random corner of the triangle
 # m = the midpoint between p and c
 # choose a color for m
 # color the pixel at m
 # p=m

Demo: break this down into manageable pieces by

inventing functions that solve pieces of the problem!

A4: Pseudocode
 # Let p be a random point in the window
 # loop 10000 times:
 # c = a random corner of the triangle
 # m = the midpoint between p and c
 # choose a color for m
 # color the pixel at m
 # p=m

Midpoint Function
def midpoint(p1x, p1y, p2x, p2y):
 “”” Return the midpoint between
 (p1x, p1y) and (p2x, p2y)
 “””
 # code here

Midpoint Function
def midpoint(p1x, p1y, p2x, p2y):
 “”” Return the midpoint between
 (p1x, p1y) and (p2x, p2y)
 “””
 # code here

Midpoint Function
def midpoint(p1x, p1y, p2x, p2y):
 “”” Return the midpoint between
 (p1x, p1y) and (p2x, p2y)
 “””
 # code here

(mid_x, mid_y)

Midpoint Function
def midpoint(p1x, p1y, p2x, p2y):
 “”” Return the midpoint between
 (p1x, p1y) and (p2x, p2y)
 “””
 # code here

(mid_x, mid_y)

This is two
things!?

Can we return
two things?

Midpoint Function
def midpoint(p1x, p1y, p2x, p2y):
 “”” Return the midpoint between
 (p1x, p1y) and (p2x, p2y)
 “””
 # code here

(mid_x, mid_y)

This is two
things!?

Can we return
two things?

Midpoint Function
def midpoint(p1x, p1y, p2x, p2y):
 “”” Return the midpoint between
 (p1x, p1y) and (p2x, p2y)
 “””
 # code here
 # mid_x = . . .
 # mid_y = . . .

 return mid_x, mid_y

(mid_x, mid_y)

Returning Multiple Values
• You can return multiple values from a

function by grouping them into a comma-
separated sequence: 
 

• You can assign each to a variable when
calling the function:

return mid_x, mid_y

mx, my = midpoint(p1x, p1y, p2x, p2y)

These are actually tuples
• A tuple is a sequence of values, optionally

enclosed in parens.

• You can “pack” and “unpack” them using
assignment statements:

(1, 4, “Mufasa”)

v = (1, 4, "Mufasa") # packing

(a, b, c) = v # "unpacking"

(of any types!)

These are actually tuples
• Tuples can also be passed into functions as

arguments:
def midpoint(p1, p2):
 “””Compute the midpoint between p1 and p2”””
 p1x, p1y = p1
 p2x, p2y = p2

 # . . .
 # return mx, my

Tuples: Demo

Tuples: Demo
• assignment, packing, unpacking

• with and without parens (printing)

• swapping

• equality

• mismatched # values to unpack

Tuples - 1
a = 1
b = 2
c = 3

v = (a, a, c)

print(v, sep=" ")

What does this print?
A: 1 2 3
B: 1 1 3
C: (1, 2, 3)
D: (1, 1, 3)

Tuples - 2
a = 1
b = 2
c = 3

a, b, c = (a, a, c)

print(a, b, c, sep=" ")

What does this print?
A: 1 2 3
B: 1 1 3
C: (1, 2, 3)
D: (1, 1, 3)

Midpoint Function
def midpoint(p1x, p1y, p2x, p2y):
 “”” Return the midpoint between
 (p1x, p1y) and (p2x, p2y)
 “””
 # code here
 # mid_x = . . .
 # mid_y = . . .

 return mid_x, mid_y

Midpoint Function
 # mid_x = . . .
 # mid_y = . . .

Okay, but how do you actually calculate this?

(p1x, p1y)

(p2x, p2y)

(mid_x,mid_y)

Midpoint Function
 # mid_x = . . .
 # mid_y = . . .

Okay, but how do you actually calculate this?

(p1x, p1y)

(p2x, p2y)

mid_y
(mid_x,mid_y)

Midpoint Function
 # mid_x = . . .
 # mid_y = . . .

Okay, but how do you actually calculate this?

(p1x, p1y)

(p2x, p2y)

mid_x

mid_y
(mid_x,mid_y)

Midpoint Function
 # mid_x = . . .
 # mid_y = . . .

Okay, but how do you actually calculate this?

(p1x, p1y)

(p2x, p2y)

mid_x

mid_y
(mid_x,mid_y)

(on the board)

Midpoint Function
 # mid_x = . . .
 # mid_y = . . .

Okay, but how do you actually calculate this?

(p1x, p1y)

(p2x, p2y)

mid_x

mid_y
(mid_x,mid_y)

(on the board) mid_x = (p1x + p2x) / 2
mid_y = (p1y + p2y) / 2

Demo: writing the midpoint
function

• With tuple as return value

• Switch to tuples as parameters for points

A4: Demo
 # Let p be a random point in the window
 # loop 10000 times:
 # c = a random corner of the triangle
 # m = the midpoint between p and c
 # choose a color for m
 # color the pixel at m
 # p=m

Color is chosen based on distance from each corner.

(details on the handout)

Subproblem: compute the distance between two points.

Exercise: Implement This
def distance(p1x, p1y, p2x, p2y):
 """ Return the distance between p1 and p2,
 which are points with coordinates
 (p1x, p1y) and (p2x, p2y)"""

on paper!

Exercise: Implement This

Math reminder:

(p1x, p1y)

(p2x, p2y)

a = p2x - p1x

b = p2y - p1yc = sqrt(a2 + b2)

def distance(p1x, p1y, p2x, p2y):
 """ Return the distance between p1 and p2,
 which are points with coordinates
 (p1x, p1y) and (p2x, p2y)"""

on paper!

Demo: Distance Function
def distance(p1x, p1y, p2x, p2y):
 """ Return the distance between p1 and p2,
 which are points with coordinates
 (p1x, p1y) and (p2x, p2y)"""

Math reminder:

(p1x, p1y)

(p2x, p2y)

a = p2x - p1x

b = p2y - p1yc = sqrt(a2 + b2)

Reminder: Docstrings,
Preconditions and Postconditions

Example. Suppose you wrote this function:
def split_bill(bill_amt, tip_pct, num_diners):
 """ Return the total owed by each diner for a
 restaurant bill of bill_amt, assuming a tip
 percent of tip_pct and splitting the bill
 evenly among num_diners people.

 """
 total = bill_amt + (bill_amt * tip_pct/100)
 return total / num_diners

Reminder: Docstrings,
Preconditions and Postconditions

Example. Suppose you wrote this function:
def split_bill(bill_amt, tip_pct, num_diners):
 """ Return the total owed by each diner for a
 restaurant bill of bill_amt, assuming a tip
 percent of tip_pct and splitting the bill
 evenly among num_diners people.

 """
 total = bill_amt + (bill_amt * tip_pct/100)
 return total / num_diners

Reminder: Docstrings,
Preconditions and Postconditions

Example. Suppose you wrote this function:
def split_bill(bill_amt, tip_pct, num_diners):
 """ Return the total owed by each diner for a
 restaurant bill of bill_amt, assuming a tip
 percent of tip_pct and splitting the bill
 evenly among num_diners people.

 """
 total = bill_amt + (bill_amt * tip_pct/100)
 return total / num_diners

>>> split_bill(34.78, 18.0, 0)

Reminder: Docstrings,
Preconditions and Postconditions

Example. Suppose you wrote this function:
def split_bill(bill_amt, tip_pct, num_diners):
 """ Return the total owed by each diner for a
 restaurant bill of bill_amt, assuming a tip
 percent of tip_pct and splitting the bill
 evenly among num_diners people.

 """
 total = bill_amt + (bill_amt * tip_pct/100)
 return total / num_diners

>>> split_bill(34.78, 18.0, 0)

ZeroDivisionError: float division by zero

Reminder: Docstrings,
Preconditions and Postconditions

Example. Suppose you wrote this function:
def split_bill(bill_amt, tip_pct, num_diners):
 """ Return the total owed by each diner for a
 restaurant bill of bill_amt, assuming a tip
 percent of tip_pct and splitting the bill
 evenly among num_diners people.

 """
 total = bill_amt + (bill_amt * tip_pct/100)
 return total / num_diners

>>> split_bill(34.78, 18.0, 0)

ZeroDivisionError: float division by zero

Bad news:

Reminder: Docstrings,
Preconditions and Postconditions

Example. Suppose you wrote this function:
def split_bill(bill_amt, tip_pct, num_diners):
 """ Return the total owed by each diner for a
 restaurant bill of bill_amt, assuming a tip
 percent of tip_pct and splitting the bill
 evenly among num_diners people.

 """
 total = bill_amt + (bill_amt * tip_pct/100)
 return total / num_diners

>>> split_bill(34.78, 18.0, 0)

This is your fault.
ZeroDivisionError: float division by zero

Bad news:

Docstrings, Preconditions
and Postconditions

Example. Suppose you wrote this function:
def split_bill(bill_amt, tip_pct, num_diners):
 """ Return the total owed by each diner for a
 restaurant bill of bill_amt, assuming a tip
 percent of tip_pct and splitting the bill
 evenly among num_diners people.
 Precondition: num_diners > 0
 """
 total = bill_amt + (bill_amt * tip_pct/100)
 return total / num_diners

Docstrings, Preconditions
and Postconditions

Example. Suppose you wrote this function:
def split_bill(bill_amt, tip_pct, num_diners):
 """ Return the total owed by each diner for a
 restaurant bill of bill_amt, assuming a tip
 percent of tip_pct and splitting the bill
 evenly among num_diners people.
 Precondition: num_diners > 0
 """
 total = bill_amt + (bill_amt * tip_pct/100)
 return total / num_diners

Docstrings, Preconditions
and Postconditions

Example. Suppose you wrote this function:
def split_bill(bill_amt, tip_pct, num_diners):
 """ Return the total owed by each diner for a
 restaurant bill of bill_amt, assuming a tip
 percent of tip_pct and splitting the bill
 evenly among num_diners people.
 Precondition: num_diners > 0
 """
 total = bill_amt + (bill_amt * tip_pct/100)
 return total / num_diners

>>> split_bill(34.78, 18.0, 0)

Docstrings, Preconditions
and Postconditions

Example. Suppose you wrote this function:
def split_bill(bill_amt, tip_pct, num_diners):
 """ Return the total owed by each diner for a
 restaurant bill of bill_amt, assuming a tip
 percent of tip_pct and splitting the bill
 evenly among num_diners people.
 Precondition: num_diners > 0
 """
 total = bill_amt + (bill_amt * tip_pct/100)
 return total / num_diners

>>> split_bill(34.78, 18.0, 0)

ZeroDivisionError: float division by zero

Docstrings, Preconditions
and Postconditions

Example. Suppose you wrote this function:
def split_bill(bill_amt, tip_pct, num_diners):
 """ Return the total owed by each diner for a
 restaurant bill of bill_amt, assuming a tip
 percent of tip_pct and splitting the bill
 evenly among num_diners people.
 Precondition: num_diners > 0
 """
 total = bill_amt + (bill_amt * tip_pct/100)
 return total / num_diners

>>> split_bill(34.78, 18.0, 0)

This is my fault.
ZeroDivisionError: float division by zero

Function Composition
Here’s a made-up equation:

final_result = (a + b)**2 - d // 12 + (a**2 - 0.5*a*c) + alpha * (dx**2 + dy**2)

Function Composition
Here’s a made-up equation:

It’s pretty incomprehensible, even if you do know
what a, b, d, c, alpha, dx, and dy mean.

final_result = (a + b)**2 - d // 12 + (a**2 - 0.5*a*c) + alpha * (dx**2 + dy**2)

Function Composition
Here’s a made-up equation:

It’s pretty incomprehensible, even if you do know
what a, b, d, c, alpha, dx, and dy mean.

Here’s a nicer way to write it:

final_result = (a + b)**2 - d // 12 + (a**2 - 0.5*a*c) + alpha * (dx**2 + dy**2)

Function Composition
Here’s a made-up equation:

x = (a + b)**2 - d // 12
y = (a**2 - 0.5*a*c)
z = alpha * (dx**2 + dy**2)

final_result = x + y + z

It’s pretty incomprehensible, even if you do know
what a, b, d, c, alpha, dx, and dy mean.

Here’s a nicer way to write it:

final_result = (a + b)**2 - d // 12 + (a**2 - 0.5*a*c) + alpha * (dx**2 + dy**2)

Function Composition
Here’s a made-up equation:

final_result = (a + b)**2 - d // 12 + (a**2 - 0.5*a*c) + alpha * (dx**2 + dy**2)

What if x, y, and z
weren’t expressions, but
more complicated
computation requiring
(for example) for loops
to compute?

Function Composition
Here’s a made-up equation:

final_result = (a + b)**2 - d // 12 + (a**2 - 0.5*a*c) + alpha * (dx**2 + dy**2)

What if x, y, and z
weren’t expressions, but
more complicated
computation requiring
(for example) for loops
to compute?

def calc_x(a, b, d):
 # calculation of x

def calc_y(a, c):
 # calculation of y

def calc_z(alpha, dx, dy):
 # calculation of z

x = calc_x(a, b, d)
y = calc_y(a, c)
z = calc_z(alpha, dx, dy)
final_result = x + y + z

Function Composition
Here’s a made-up equation:

final_result = (a + b)**2 - d // 12 + (a**2 - 0.5*a*c) + alpha * (dx**2 + dy**2)

What if x, y, and z
weren’t expressions, but
more complicated
computation requiring
(for example) for loops
to compute?

What if this is just an
intermediate result that
goes into an even
larger calculation?

Function Composition
Here’s a made-up equation:

final_result = (a + b)**2 - d // 12 + (a**2 - 0.5*a*c) + alpha * (dx**2 + dy**2)

What if x, y, and z
weren’t expressions, but
more complicated
computation requiring
(for example) for loops
to compute?

def calc_x(a, b, d):
 # calculation of x

def calc_y(a, c):
 # calculation of y

def calc_z(alpha, dx, dy):
 # calculation of z

x = calc_x(a, b, d)
y = calc_y(a, c)
z = calc_z(alpha, dx, dy)
intermediate_result = x + y + z

What if this is just an
intermediate result that
goes into an even
larger calculation?

Function Composition
Here’s a made-up equation:

final_result = (a + b)**2 - d // 12 + (a**2 - 0.5*a*c) + alpha * (dx**2 + dy**2)

What if x, y, and z
weren’t expressions, but
more complicated
computation requiring
(for example) for loops
to compute?

What if this is just an
intermediate result that
goes into an even
larger calculation?

Function Composition
Here’s a made-up equation:

final_result = (a + b)**2 - d // 12 + (a**2 - 0.5*a*c) + alpha * (dx**2 + dy**2)

What if x, y, and z
weren’t expressions, but
more complicated
computation requiring
(for example) for loops
to compute?

def calc_x(a, b, d):
 # calculation of x

def calc_y(a, c):
 # calculation of y

def calc_z(alpha, dx, dy):
 # calculation of z

def calc_gamma(a,b,c,d,alpha,dx,dy):
 x = calc_x(a, b, d)
 y = calc_y(a, c)
 z = calc_z(alpha, dx, dy)
 return x + y + z

What if this is just an
intermediate result that
goes into an even
larger calculation?

