
CSCI 141
Lecture 15

More Scope; Return Values; A4; Tuples

Announcements

Announcements
• A4 out today! Due Wednesday 11/13

Announcements
• A4 out today! Due Wednesday 11/13

• It's big.

Announcements
• A4 out today! Due Wednesday 11/13

• It's big.

• It's bad.

Announcements
• A4 out today! Due Wednesday 11/13

• It's big.

• It's bad.

• 11/11 is a holiday.

Announcements
• A4 out today! Due Wednesday 11/13

• It's big.

• It's bad.

• 11/11 is a holiday.

• Start early and get help if you're stuck.

Goals
• Be able to execute functions the way Python does, and

understand the implications for local variables and scope.

• Know how to return a value from a function, and understand
the behavior of the return statement.

• Understand the task assigned in A4 and how to approach it.

• Understand the basic usage of tuples:

• using tuples to return multiple values from a function

• packing and unpacking via assignment

QOTD
In which of the lines
marked with comments
is the variable v2 in
scope?

In which of the lines
marked with comments
is the variable v3 in
scope?

M1
def a(v1, v2):
 # M2
 v3 = v1 + v2
 # M3
 print(v3)

M4
a(4, 6)
M5

How to Execute Function Calls
def axpy(a, x, y):
 """ Print a*x + y """
 product = a * x
 result = product + y
 print(result)

a1 = 2
x1 = 3
print(axpy(a1, x1, 4))
print(a1)

1. Evaluate all arguments

2. Draw a local "box" inside
the current "box"

3. Assign argument values to
parameter variables in the
local box

4. Execute the function body

5. When done, erase the local
box

How to Execute Function Calls
def axpy(a, x, y):
 """ Print a*x + y """
 product = a * x
 result = product + y
 print(result)

a1 = 2
x1 = 3
print(axpy(a1, x1, 4))
print(a1)

1. Evaluate all arguments

2. Draw a local "box" inside
the current "box"

3. Assign argument values to
parameter variables in the
local box

4. Execute the function body

5. When done, erase the local
box

If multiple variables exist with
the same name, use the

innermost one available.

QOTD
• What does this program print?

def f(x):
 g(3 * x)

def g(x):
 print(x + 2)

f(4)

QOTD
What does this
program print?
def f(x):
 g(3 * x)

def g(x):
 print(x + 2)

f(4)

To execute a function call:

1. Evaluate all arguments

2. Draw a local "box" inside
the current "box"

3. Assign argument values to
parameter variables in the
local box

4. Execute the function body

5. When done, erase the local
box

Variable Scope
def print_rectangle_area(width, height):
 """ Print the area of a width-by-height
 rectangle """

 area = width * height
 print(area)

w = 4
h = 3
a = w * h
print_rectangle_area(w, h)

1
2
3
4
5
6
7
8
9

10
11
12

What if I want to do further computation
with the result of the rectangle area?

Variable Scope
def print_rectangle_area(width, height):
 """ Print the area of a width-by-height
 rectangle """

 area = width * height
 print(area)

w = 4
h = 3
a = w * h
print_rectangle_area(w, h)

1
2
3
4
5
6
7
8
9

10
11
12

What if I want to do further computation
with the result of the rectangle area?
It got printed, then it was gone…

Writing Functions: Syntax

def name(parameters):
 statements

Two important questions:

1. How does the function use the arguments

(inputs) passed to it?

2. How does the function return a value?

Returning values
New statement: the return statement

Syntax:

Behavior:

1. expression is evaluated

2. the function stops executing further statements

3. the value of expression is returned 
i.e., the function call evaluates to the returned value

return expression

Returning values
New statement: the return statement

Syntax:

Behavior:

1. expression is evaluated

2. the function stops executing further statements

3. the value of expression is returned 
i.e., the function call evaluates to the returned value

return expression this can only appear inside
a function definition!

Demo: add2.py
• Make add2 return instead of print

• Assign result to a variable

• function composition: call add2 on the
results of add2 calls

Function Syntax: Summary

def name(parameters):
 “”” docstring “””
 statements

def keyword function name

comma-separated
list of parameters:

variable names that
will get assigned to
the arguments

An indented code block that
does any computation,
executes any effects, and
(optionally) returns a value

inputs

effects; return value

Specification

Why are functions great?
• Concise - wrap something complicated in an easy-

to-use package:

• define a function once then easily call it anywhere

• Customizable - make the easy-to-use package do
different things:

• customize the task your function performs based on its arguments

• Composable - use the result of one computation as
input to (or as one step in) another.

A4
Your task:
Draw this.

A4
Your task:
Draw this.

Sounds
simple,
right?

A4
Your task:
Draw this.

Sounds
simple,
right?

No.

A4: Pseudocode
 # Let p be a random point in the window
 # loop 10000 times:
 # c = a random corner of the triangle
 # m = the midpoint between p and c
 # choose a color for m
 # color the pixel at m
 # p=m

This pseudocode draws that crazy triangle thing.

A4: Pseudocode
 # Let p be a random point in the window
 # loop 10000 times:
 # c = a random corner of the triangle
 # m = the midpoint between p and c
 # choose a color for m
 # color the pixel at m
 # p=m

This pseudocode draws that crazy triangle thing.

Do you believe me?

A4: Pseudocode
 # Let p be a random point in the window
 # loop 10000 times:
 # c = a random corner of the triangle
 # m = the midpoint between p and c
 # choose a color for m
 # color the pixel at m
 # p=m

(demo)

This pseudocode draws that crazy triangle thing.

Do you believe me?

A4: Demo
 # Let p be a random point in the window
 # loop 10000 times:
 # c = a random corner of the triangle
 # m = the midpoint between p and c
 # choose a color for m
 # color the pixel at m
 # p=m

A4: Demo
 # Let p be a random point in the window
 # loop 10000 times:
 # c = a random corner of the triangle
 # m = the midpoint between p and c
 # choose a color for m
 # color the pixel at m
 # p=m

Demo:

• making up function names

Midpoint Function
def midpoint(p1x, p1y, p2x, p2y):
 “”” Return the midpoint between
 (p1x, p1y) and (p2x, p2y)
 “””
 # code here

(mid_x, mid_y)

This is two
things!?

Can we return
two things?

Midpoint Function
def midpoint(p1x, p1y, p2x, p2y):
 “”” Return the midpoint between
 (p1x, p1y) and (p2x, p2y)
 “””
 # code here

(mid_x, mid_y)

This is two
things!?

Can we return
two things?

Midpoint Function
def midpoint(p1x, p1y, p2x, p2y):
 “”” Return the midpoint between
 (p1x, p1y) and (p2x, p2y)
 “””
 # code here
 # mid_x = . . .
 # mid_y = . . .

(mid_x, mid_y)

Midpoint Function
def midpoint(p1x, p1y, p2x, p2y):
 “”” Return the midpoint between
 (p1x, p1y) and (p2x, p2y)
 “””
 # code here
 # mid_x = . . .
 # mid_y = . . .

 return mid_x, mid_y

(mid_x, mid_y)

Midpoint Function
 # mid_x = . . .
 # mid_y = . . .

Okay, but how do you actually calculate this?

(p1x, p1y)

(p2x, p2y)

mid_x

mid_y
(mid_x,mid_y)

(whiteboard)

Midpoint Function
 # mid_x = . . .
 # mid_y = . . .

Okay, but how do you actually calculate this?

(p1x, p1y)

(p2x, p2y)

mid_x

mid_y
(mid_x,mid_y)

(whiteboard) mid_x = (p1x + p2x) / 2
mid_y = (p1y + p2y) / 2

Returning Multiple Values
• You can return multiple values from a

function by grouping them into a comma-
separated sequence: 
 

• You can assign each to a variable when
calling the function:

return mid_x, mid_y

mx, my = midpoint(p1x, p1y, p2x, p2y)

These are actually tuples
• A tuple is a sequence of values, optionally

enclosed in parens.

• You can “pack” and “unpack” them using
assignment statements:

(1, 4, “Mufasa”)

v = (1, 4, “Mufasa”)

(a, b, c) = v

These are actually tuples
• Tuples can also be passed into functions as

arguments:
def midpoint(p1, p2):
 “””Compute the midpoint between p1 and p2”””
 p1x, p1y = p1
 p2x, p2y = p2

 # . . .
 # return mx, my

Tuples: Demo

