
CSCI 141
Lecture 14

Functions:

Parameters, Local Variables, Scope, Return Value

Announcements

Announcements
• Midterm grading is underway

Announcements
• Midterm grading is underway

• Lots of new syntax and concepts happening
this week.

Announcements
• Midterm grading is underway

• Lots of new syntax and concepts happening
this week.

• Read Chapter 6 of the ebook and make sure
you understand everything on the the Lab 5
handout.

Announcements
• Midterm grading is underway

• Lots of new syntax and concepts happening
this week.

• Read Chapter 6 of the ebook and make sure
you understand everything on the the Lab 5
handout.

• You will be responsible for material I don’t cover
in class, but does appear in Chapter 6 or Lab 5.

Goals
• Know the syntax for defining your own functions

• Know how to define and use functions that take no arguments and return no
values

• Know how to use parameters to refer to the input arguments in a function
definition

• Know the syntax for triple-quoted strings, and how they are used to write
docstrings that describe a function’s specification.

• Know what does and does not belong in a function specification (see Lab 5)

• Know the meaning of local variables and variable scope and how it relates
to function parameters.

• Know how to return a value from a function.

Functions, Revisited
What is a function, anyway?
• As a user, you can treat a function as a “black box”:

all you need to know is:

• the inputs, effects, and return value.

• Functions are named chunks of code.

Input(s) Return value
(Effects)

A bunch of (complicated)
stuff is wrapped up in a nice,

easy-to-use package.

Writing Functions: Syntax

def name(parameters):
 statements

Two important questions:

1. How does the function use the arguments

(inputs) passed to it?
2. How does the function return a value?

Writing Functions: Syntax

def name(parameters):
 statements

def keyword function name

1. How does the function use the arguments (inputs) passed to it?

Writing Functions: Syntax

def name(parameters):
 statements

def keyword function name

1. How does the function use the arguments (inputs) passed to it?

comma-separated
list of parameters:

variable names that
will refer to the input
arguments

inputs

Why are functions great?
• Concise - wrap something complicated in an easy-to-use

package:

• define a function once then easily call it anywhere

• Customizable - make the easy-to-use package do
different things:

• customize the task your function performs based on its arguments

• Composable - use the result of one computation as input
to (or as one step in) another:

• We'll talk about this next lecture.

Demo: Function to draw a
square using a turtle

Demo: Function to draw a
square using a turtle

• Concise: turtle_square call tells the turtle to
do a bunch of things

• Customizable: turtle_rectangle(w, h)
function draws a w-by-h rectangle

• add docstrings at the end!

def turtle_rectangle(t, w, h):
 """ Draw a w-by-h rectangle using turtle t
 The turtle starts facing the width  
 direction and ends where it started."""
 for i in range(2):
 t.forward(w)
 t.left(90)
 t.forward(h)
 t.left(90)

turtle_rectangle

What’s """ this """ about? Two things in one:

def turtle_rectangle(t, w, h):
 """ Draw a w-by-h rectangle using turtle t
 The turtle starts facing the width  
 direction and ends where it started."""
 for i in range(2):
 t.forward(w)
 t.left(90)
 t.forward(h)
 t.left(90)

turtle_rectangle

What’s """ this """ about? Two things in one:

• Multiline strings: An alternate way to write strings that
include newlines.

def turtle_rectangle(t, w, h):
 """ Draw a w-by-h rectangle using turtle t
 The turtle starts facing the width  
 direction and ends where it started."""
 for i in range(2):
 t.forward(w)
 t.left(90)
 t.forward(h)
 t.left(90)

turtle_rectangle

What’s """ this """ about? Two things in one:

• Multiline strings: An alternate way to write strings that
include newlines.

• A docstring: The conventional way to write comments that
describe the purpose and behavior of a function.

def turtle_rectangle(t, w, h):
 """ Draw a w-by-h rectangle using turtle t
 The turtle starts facing the width  
 direction and ends where it started."""
 for i in range(2):
 t.forward(w)
 t.left(90)
 t.forward(h)
 t.left(90)

turtle_rectangle

Multiline Strings and
Docstrings: Demo

Multiline Strings and
Docstrings: Demo

• Multiline strings: printing, assigning, etc.

• A string on a line by itself has no effect on the program.

• Docstrings in functions are like comments (but aren’t,
technically)

Docstrings

Docstrings
Docstrings are not required by the language.

Docstrings
Docstrings are not required by the language.

Docstrings are required by me.

Docstrings
Docstrings are not required by the language.

Docstrings are required by me.

• A docstring tells you what the function
does, but not how it does it.

Docstrings
Docstrings are not required by the language.

Docstrings are required by me.

• A docstring tells you what the function
does, but not how it does it.

• In other terms, it tells you what you need to
know to use the function, but not what the
function’s author needed to know to write it.

Docstrings: Example
The (actual) source code for turtle.forward:

 def forward(self, distance):
 """Move the turtle forward by the specified distance.

 Aliases: forward | fd

 Argument:
 distance -- a number (integer or float)

 Move the turtle forward by the specified distance, in the direction
 the turtle is headed.

 Example (for a Turtle instance named turtle):
 >>> turtle.position()
 (0.00, 0.00)
 >>> turtle.forward(25)
 >>> turtle.position()
 (25.00,0.00)
 >>> turtle.forward(-75)
 >>> turtle.position()
 (-50.00,0.00)
 """
 self._go(distance)

Docstring:

Implementation:

Docstrings: Example
The (actual) source code for turtle.forward:

 def forward(self, distance):
 """Move the turtle forward by the specified distance.

 Aliases: forward | fd

 Argument:
 distance -- a number (integer or float)

 Move the turtle forward by the specified distance, in the direction
 the turtle is headed.

 Example (for a Turtle instance named turtle):
 >>> turtle.position()
 (0.00, 0.00)
 >>> turtle.forward(25)
 >>> turtle.position()
 (25.00,0.00)
 >>> turtle.forward(-75)
 >>> turtle.position()
 (-50.00,0.00)
 """
 self._go(distance)

Docstring:

Implementation:

Docstrings: Example
Python documentation is generated from the
docstrings in the code!

Docstrings: Example
Python documentation is generated from the
docstrings in the code!

QOTD 10/21
def pnmr(n, r):
 print(n % r, end=" ")

size = 7
rad = 3
for num in range(0,size):
 pnmr(num, rad)

• How many numbers does this print?

• How many 1's does this print?

QOTD 10/21
def pnmr(n, r):
 print(n % r, end=" ")

size = 7
rad = 3
for num in range(0,size):
 pnmr(num, rad)

• How many numbers does this print?

• How many 1's does this print?

Let's step through this using Thonny.

Writing Functions: Syntax

def name(parameters):
 statements

def keyword function name

1. How does the function use the arguments (inputs) passed to it?

Writing Functions: Syntax

def name(parameters):
 statements

def keyword function name

1. How does the function use the arguments (inputs) passed to it?

comma-separated
list of parameters:

variable names that
will refer to the input
arguments

inputs

Writing Functions: Syntax

def name(parameters):
 statements

def keyword function name

1. How does the function use the arguments (inputs) passed to it?

comma-separated
list of parameters:

variable names that
will refer to the input
arguments

inputs

Inside the function, the parameters
act as local variables that refer to
the arguments passed into the
function.

Parameters vs Arguments
Parameters: variable names that will refer to
the input arguments.

def add2(a, b):
 """ Print the sum of a and b """
 print(a + b)

add2(4, 10)

Arguments (we’ve seen these before):

values passed into a function.

Parameters (these are new):

variables that take on the value of the arguments

Parameters are Local Variables

• They only exist inside the function.

• Any other variables declared inside a function
are also local variables.

• This is an example of a broader concept called
scope: a variable’s scope is the set of
statements in which it is visible/usable.

• A local variable’s scope is limited to the
function inside which it’s defined.

Local Variables: Example
Task:
Write (define) a function that adds two
numbers and prints their sum.

After the function definition, call (invoke) the
function.

Parameters and Local
Variables: Demo

• add2.py

Parameters and Local
Variables: Demo

• add2.py:

• parameters as local variables (inaccessible outside fn)

• other local variables

• variables getting passed in

• variables shadowing other variables

• global variables

Variable Scope
def print_rectangle_area(width, height):
 """ Print the area of a width-by-height
 rectangle """

 area = width * height
 print(area)

w = 4
h = 3
a = w * h
print_rectangle_area(w, h)

1
2
3
4
5
6
7
8
9

10
11
12

Variable Scope
def print_rectangle_area(width, height):
 """ Print the area of a width-by-height
 rectangle """

 area = width * height
 print(area)

w = 4
h = 3
a = w * h
print_rectangle_area(w, h)

1
2
3
4
5
6
7
8
9

10
11
12

In which line is
area in scope?

A. 2

B. 6

C. 8

D. 10

Variable Scope
def print_rectangle_area(width, height):
 """ Print the area of a width-by-height
 rectangle """

 area = width * height
 print(area)

w = 4
h = 3
a = w * h
print_rectangle_area(w, h)

1
2
3
4
5
6
7
8
9

10
11
12

Variable Scope
def print_rectangle_area(width, height):
 """ Print the area of a width-by-height
 rectangle """

 area = width * height
 print(area)

w = 4
h = 3
a = w * h
print_rectangle_area(w, h)

1
2
3
4
5
6
7
8
9

10
11
12

Which version of line
12 does not do the
same thing as line 11?

A. print(h * w)
B. print(width * height)
C. print(w * h)
D. print_rectangle_area(h, w)

Variable Scope

Writing Functions: Syntax

def name(parameters):
 statements

Two important questions:

1. How does the function use the arguments

(inputs) passed to it?

2. How does the function return a value?

Returning values
New statement: the return statement

Syntax:

Behavior:

1. expression is evaluated

2. the function stops executing further statements

3. the value of expression is returned 
i.e., the function call evaluates to the returned value

return expression

Function Syntax: Summary

def name(parameters):
 statements

def keyword function name

comma-separated
list of parameters:

variable names that
will get assigned to
the arguments

An indented code block that
does any computation,
executes any effects, and
(optionally) returns a value

inputs

effects; return value

Return values: Demo
• Make add2 return the sum instead of

printing it.

• Using the result of one computation as the
input to another: function composition.

Returning values
New statement: the return statement

Syntax:

Behavior:

1. expression is evaluated

2. the function stops executing further statements

3. the value of expression is returned 
i.e., the function call evaluates to the returned value

return expression

Returning values
New statement: the return statement

Syntax:

Behavior:

1. expression is evaluated

2. the function stops executing further statements

3. the value of expression is returned 
i.e., the function call evaluates to the returned value

return expression (can only appear inside a
function definition)

Returning values: Why?
• Next time:

• Using the result of one computation as the
input to another: function composition.

