
CSCI 141
Lecture 12:

More turtles

Opening the black box: introduction to functions

Announcements

• Bring your questions to Wednesday's lecture -
QOTDs, coding questions, etc.

Announcements

• Bring your questions to Wednesday's lecture -
QOTDs, coding questions, etc.

• Exam material: range(functions)

Announcements

• Bring your questions to Wednesday's lecture -
QOTDs, coding questions, etc.

• Exam material: range(functions)

• that is, 0 up to but not including writing your own functions 
(this should be partway through today's lecture)

Announcements

Goals
• Be able to write programs that make turtles draw

simple shapes

• Be able to choose which type of loop (while or for) is
best for a given problem.

• Know the syntax for defining your own functions

• Know how to define and use functions that take no
arguments and return no values

• Know how to define use parameters to refer to the
input arguments of a function

QOTD

for i in range(4):
 for j in range(3, 6):
 print("*", end =" ")
 print()

QOTD

Which of the following programs end with v
having the same value as the program above?

v = 1
for i in range(1, 6):
 v = v * i

v = 1
i = 0
while i < 5:
 i += 1
 v = v * i

Program A:

QOTD

Which of the following programs end with v
having the same value as the program above?

v = 1
for i in range(1, 6):
 v = v * i

v = 2
for i in range(1, 5):
 v = v * i

Program B:

QOTD

Which of the following programs end with v
having the same value as the program above?

v = 1
for i in range(1, 6):
 v = v * i

v = 1
for i in range(5):
 v = v * (i + 1)

Program C:

QOTD

Which of the following programs end with v
having the same value as the program above?

v = 1
for i in range(1, 6):
 v = v * i

v = 1
i = 1
while i <= 5:
 v = v * i
 i += 1

Program D:

A question about for loops

for value in [1, 16, 4]:
 print(value)
 value = value * 10

(for_quirk.py)

Last time: Turtles!

https://media1.tenor.com/images/dbf913ebd7f8cd2207d9c91122ce3328/tenor.gif?itemid=9972165

Last time: Turtles!

https://media1.tenor.com/images/dbf913ebd7f8cd2207d9c91122ce3328/tenor.gif?itemid=9972165

Creating and Using Objects
import turtle
scott = turtle.Turtle()

What is this about?

No new syntax here:

We import a module called turtle
that has a function called Turtle

Creating and Using Objects
import turtle
scott = turtle.Turtle()

Creating and Using Objects

The Turtle() function starts with a capital letter. 
By convention this indicates that a constructor that
creates (and returns) new objects of type Turtle.

import turtle
scott = turtle.Turtle()

Creating and Using Objects

The Turtle() function starts with a capital letter. 
By convention this indicates that a constructor that
creates (and returns) new objects of type Turtle.

The variable scott now refers to a newly created
Turtle object.

import turtle
scott = turtle.Turtle()

Creating and Using Objects

The Turtle() function starts with a capital letter. 
By convention this indicates that a constructor that
creates (and returns) new objects of type Turtle.

The variable scott now refers to a newly created
Turtle object.

import turtle
scott = turtle.Turtle()

what is an object? what can it do?

Creating and Using Objects

The Turtle() function starts with a capital letter. 
By convention this indicates that a constructor that
creates (and returns) new objects of type Turtle.

The variable scott now refers to a newly created
Turtle object.

import turtle
scott = turtle.Turtle()

what is an object? what can it do?

(whiteboard: diagram of assignment statement)

Creating and Using Objects
import turtle
scott = turtle.Turtle()

Creating and Using Objects

Objects can have functions associated with them,
accessed via the dot notation:

import turtle
scott = turtle.Turtle()

Creating and Using Objects

Objects can have functions associated with them,
accessed via the dot notation:

import turtle
scott = turtle.Turtle()

move the turtle forward 10 units:
scott.forward(10)
turn the turtle left 90 degrees:
scott.left(90)

Creating and Using Objects

Objects can have functions associated with them,
accessed via the dot notation:

import turtle
scott = turtle.Turtle()

functions that belong to an object are called its methods

move the turtle forward 10 units:
scott.forward(10)
turn the turtle left 90 degrees:
scott.left(90)

Creating and Using Objects

Objects can have functions associated with them,
accessed via the dot notation:

import turtle
scott = turtle.Turtle()

functions that belong to an object are called its methods

move the turtle forward 10 units:
scott.forward(10)
turn the turtle left 90 degrees:
scott.left(90)

What methods do Turtles have? Lots! 
Check the docs: 
https://docs.python.org/3.3/library/turtle.html?highlight=turtle

https://docs.python.org/3.3/library/turtle.html?highlight=turtle

Modules vs Objects

import random
num = random.randint(0,9)

import turtle
scott = turtle.Turtle()
scott.forward(100)

Modules vs Objects

import random
num = random.randint(0,9)

import turtle
scott = turtle.Turtle()
scott.forward(100)

import a module

Modules vs Objects

import random
num = random.randint(0,9)

import turtle
scott = turtle.Turtle()
scott.forward(100)

import a module

call one of its functions

Modules vs Objects

import random
num = random.randint(0,9)

import turtle
scott = turtle.Turtle()
scott.forward(100)

import a module

call one of its functions

import a module

Modules vs Objects

import random
num = random.randint(0,9)

import turtle
scott = turtle.Turtle()
scott.forward(100)

import a module

call one of its functions

import a module

call one of its functions
which creates an object

Modules vs Objects

import random
num = random.randint(0,9)

import turtle
scott = turtle.Turtle()
scott.forward(100)

import a module

call one of its functions

import a module

call one of its functions
which creates an object

call one of that
object's methods

Modules vs Objects

import random
num = random.randint(0,9)

import turtle
scott = turtle.Turtle()
scott.forward(100)

import a module

call one of its functions

import a module

call one of its functions
which creates an object

call one of that
object's methods

Demo: make more than one turtle

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:
1. Move forward 100

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:
1. Move forward 100
2. Turn left 90 degrees

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:
1. Move forward 100
2. Turn left 90 degrees
3. Move forward 100

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:
1. Move forward 100
2. Turn left 90 degrees
3. Move forward 100
4. Turn left 90 degrees

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:
1. Move forward 100
2. Turn left 90 degrees
3. Move forward 100
4. Turn left 90 degrees
5. Move forward 100

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:
1. Move forward 100
2. Turn left 90 degrees
3. Move forward 100
4. Turn left 90 degrees
5. Move forward 100
6. Turn left 90 degrees

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:
1. Move forward 100
2. Turn left 90 degrees
3. Move forward 100
4. Turn left 90 degrees
5. Move forward 100
6. Turn left 90 degrees
7. Move forward 100

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:
1. Move forward 100
2. Turn left 90 degrees
3. Move forward 100
4. Turn left 90 degrees
5. Move forward 100
6. Turn left 90 degrees
7. Move forward 100
8. (Turn left 90 degrees)

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:
1. Move forward 100
2. Turn left 90 degrees
3. Move forward 100
4. Turn left 90 degrees
5. Move forward 100
6. Turn left 90 degrees
7. Move forward 100
8. (Turn left 90 degrees)

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:
1. Move forward 100
2. Turn left 90 degrees
3. Move forward 100
4. Turn left 90 degrees
5. Move forward 100
6. Turn left 90 degrees
7. Move forward 100
8. (Turn left 90 degrees)

Can we do better?

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:

Repeat 4 times:

1. move forward 100

2. turn left 90

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:

Repeat 4 times:

1. move forward 100

2. turn left 90

Demo

Demo
• turtle_for.py: Create a turtle and draw a

square with a for loop

• turtle_while.py: Create a turtle and draw a
square with a while loop

while vs for
Are for loops always better?

while vs for
Task: Generate and print random integers
between 1 and 10 (inclusive) until one of the
random numbers exceeds 8.

Would you use a for
loop or a while loop?

while vs for
Task: Ask the user for a number (n), then print
100 random numbers between 0 and n.

Would you use a for
loop or a while loop?

while vs for
Task: Sum the numbers from 1 to 340,
leaving out those divisible by 5.

Would you use a for
loop or a while loop?

Functions, Revisited

Functions, Revisited
• We’ve been using functions since day 1:

Functions, Revisited
• We’ve been using functions since day 1:

print("Hello, World!")

Functions, Revisited
• We’ve been using functions since day 1:

• Built-in functions so far:  
print, input, type, len, int, str, ...

print("Hello, World!")

Functions, Revisited
• We’ve been using functions since day 1:

• Built-in functions so far:  
print, input, type, len, int, str, ...

• We can import more functions: 
import math  
import turtle  
math.sqrt(4)  
turtle.Turtle()

print("Hello, World!")

Functions, Revisited
What is a function, anyway?

print("Hello world")

Functions, Revisited
What is a function, anyway?
It’s a chunk of code with a name.

print("Hello world")

Functions, Revisited
What is a function, anyway?
It’s a chunk of code with a name.
• It may take arguments as input

print("Hello world")

Functions, Revisited
What is a function, anyway?
It’s a chunk of code with a name.
• It may take arguments as input
• It may do something that has an effect

print("Hello world")

Functions, Revisited
What is a function, anyway?
It’s a chunk of code with a name.
• It may take arguments as input
• It may do something that has an effect
• It may return a value

print("Hello world")

Functions, Revisited
What is a function, anyway?
It’s a chunk of code with a name.
• It may take arguments as input
• It may do something that has an effect
• It may return a value

print

print("Hello world")

Functions, Revisited
What is a function, anyway?
It’s a chunk of code with a name.
• It may take arguments as input
• It may do something that has an effect
• It may return a value

Input(s):
• 0 or more values

• (optional) sep and end

keywords print

print("Hello world")

Functions, Revisited
What is a function, anyway?
It’s a chunk of code with a name.
• It may take arguments as input
• It may do something that has an effect
• It may return a value

Input(s):
• 0 or more values

• (optional) sep and end

keywords

Return value:
• none

print

print("Hello world")

Functions, Revisited
What is a function, anyway?
It’s a chunk of code with a name.
• It may take arguments as input
• It may do something that has an effect
• It may return a value

Input(s):
• 0 or more values

• (optional) sep and end

keywords

Effects: prints arguments to the screen,

with given separator and end

Return value:
• none

print

print("Hello world")

Functions, Revisited
What is a function, anyway?

input

It’s a chunk of code with a name.

• It may take arguments as input

• It may do something that has an effect

• It may return a value

Input(s): Return value:

Effects:

• none, or

• a string to print as a

prompt

prompts for user input and
reads it from the keyboard

• the input from the user

input(“Enter a number:”)

Functions, Revisited
What is a function, anyway?

type

It’s a chunk of code with a name.

• It may take arguments as input

• It may do something that has an effect

• It may return a value

Input(s): Return value:

Effects:

• a value

none

• the type of the value

type(6/2)

Functions, Revisited
What is a function, anyway?

math.sin

It’s a chunk of code with a name.

• It may take arguments as input

• It may do something that has an effect

• It may return a value

Input(s): Return value:

Effects:

• a number

none

• the sine of the value

math.sin(math.pi/2)

Functions, Revisited
What is a function, anyway?

scott.forward

It’s a chunk of code with a name.

• It may take arguments as input

• It may do something that has an effect

• It may return a value

Input(s): Return value:

Effects:

• a number

moves the turtle forward by
the given number of units

• none

Functions, Revisited
What is a function, anyway?

Input(s) Return value
(Effects)

Functions, Revisited
What is a function, anyway?
• So far we’ve treated functions as “black boxes”,

code someone else wrote that does stuff for us.

Input(s) Return value
(Effects)

Functions, Revisited
What is a function, anyway?
• So far we’ve treated functions as “black boxes”,

code someone else wrote that does stuff for us.
• All we know are the inputs, effects, and return value.

Input(s) Return value
(Effects)

Functions, Revisited
What is a function, anyway?
• So far we’ve treated functions as “black boxes”,

code someone else wrote that does stuff for us.
• All we know are the inputs, effects, and return value.
• We don’t know how it’s done.

Input(s) Return value
(Effects)

Functions, Revisited
What is a function, anyway?
• So far we’ve treated functions as “black boxes”,

code someone else wrote that does stuff for us.
• All we know are the inputs, effects, and return value.
• We don’t know how it’s done.

Input(s) Return value
(Effects)

This is a great
situation to be in!

Functions, Revisited
What is a function, anyway?
• So far we’ve treated functions as “black boxes”,

code someone else wrote that does stuff for us.
• All we know are the inputs, effects, and return value.
• We don’t know how it’s done.

Input(s) Return value
(Effects)

This is a great
situation to be in!

A bunch of (complicated),
powerful stuff is wrapped up

in a nice, easy-to-use
package.

What if
You want a nice easy-to-use
function that does something
complicated, but nobody else
has written it for you…

What if
You want a nice easy-to-use
function that does something
complicated, but nobody else
has written it for you…

What if
You want a nice easy-to-use
function that does something
complicated, but nobody else
has written it for you…

Soon, you will have the power
to write your own functions.

What if
You want a nice easy-to-use
function that does something
complicated, but nobody else
has written it for you…

Soon, you will have the power
to write your own functions.

Writing Functions: Syntax

def name(parameters):
 statements

Writing Functions: Syntax

def name(parameters):
 statements

Two important questions:

Writing Functions: Syntax

def name(parameters):
 statements

Two important questions:
1. How does the function use the arguments

(inputs) passed to it?

Writing Functions: Syntax

def name(parameters):
 statements

Two important questions:
1. How does the function use the arguments

(inputs) passed to it?
2. How does the function return a value?

Writing Functions: Syntax

def name(parameters):
 statements

Two important questions:
1. How does the function use the arguments

(inputs) passed to it?
2. How does the function return a value?

Let’s dodge these questions for a moment…

Functions: the simplest kind
No arguments, no return value:

def name():
 statements

def print_hello():
 print("Hello, world!")

Example:

Demo
• hello_fn.py

Demo
• print_hello

• definition does nothing except make the
function exist

• call it

• can call it whenever/however many times

• can’t call it before it’s defined

Demo: Function to print a
rectangle of # symbols

print_rectangle

Input(s): Return value:

Effects:

• none

prints a 2x50 rectangle of #s to the screen

• none

Demo: Function to print a
rectangle of # symbols

• executing a def statement (function
definition) has no effect except defining that
function.

• after it is defined, a function can be used
whenever and wherever in the program

• modify to ask user what character to print

Writing Functions: Syntax

def name(parameters):
 statements

Two important questions:

1. How does the function use the arguments

(inputs) passed to it?
2. How does the function return a value?

Let’s dodge these questions for a moment…

Writing Functions: Syntax

def name(parameters):
 statements

def keyword function name

1. How does the function use the arguments (inputs) passed to it?

Writing Functions: Syntax

def name(parameters):
 statements

def keyword function name

1. How does the function use the arguments (inputs) passed to it?

comma-separated
list of parameters:

variable names that
will refer to the input
arguments

inputs

Demo: Function to print a rectangle of
a symbol passed in as an argument.

print_rectangle

Input(s): Return value:

Effects:

• character to make a
rectangle out of

prints a 2x50 rectangle of the given
character to the screen

• none

Writing Functions: Syntax

def name(parameters):
 statements

def keyword function name

1. How does the function use the arguments (inputs) passed to it?

Writing Functions: Syntax

def name(parameters):
 statements

def keyword function name

1. How does the function use the arguments (inputs) passed to it?

comma-separated
list of parameters:

variable names that
will refer to the input
arguments

inputs

Writing Functions: Syntax

def name(parameters):
 statements

def keyword function name

1. How does the function use the arguments (inputs) passed to it?

comma-separated
list of parameters:

variable names that
will refer to the input
arguments

inputs

Inside the function, the parameters
act as local variables that refer to
the arguments passed into the
function.

Demo: Function to draw a
square using a turtle

