
CSCI 141
Lecture 11:

for loops and the range function

Turtles!?

Happenings
· Slalom Information Session Tuesday, October 22nd

o Information Booth 10:30-12:00 PM CF First Floor Foyer

o Information Session 6:00-7:00 PM AW 204

· CS Mentors Program Present “GDB Workshop” Thursday, October 24th 3 PM CF 165

o Perfect for students in CSCI 247 & 347

· Internship and Volunteer Fair Thursday, October 24th 12:00-4:00 PM VU Multipurpose Room

· Amazon Tuesday, October 29th

o Info Table 10:30-12:00 PM at VU Lobby

o Info Session 4:00-5:00 PM at AW 204

o Resume Prep 5:15-7:00 PM at AW 204

o Open to all of campus not just CS students

· PACCAR Career Day Wednesday, October 30th 10:00 AM-3:00 PM South Campus

Announcements

• Exam is next Friday

Announcements

• Exam is next Friday

• 50 minutes

Announcements

• Exam is next Friday

• 50 minutes

• Closed-book; no notes

Announcements

• Exam is next Friday

• 50 minutes

• Closed-book; no notes

• No calculators (there won’t be any hard arithmetic)

Announcements

• Exam is next Friday

• 50 minutes

• Closed-book; no notes

• No calculators (there won’t be any hard arithmetic)

• Sample programming questions will be
released this afternoon.

Announcements

Goals
• Know the syntax and behavior of the for

statement (for loop)

• Know how to use the range function in the header
of a for loop.

• Know how to use the turtle module to:

• Create a Turtle object

• Call the turtle object's methods (functions) to move it around the
screen and draw simple shapes: 
(forward, left, right, penup, pendown)

Hot take: for some tasks,  
while loops are annoying.

Hot take: for some tasks,  
while loops are annoying.
• Often, you want: “Do some_thing() 10 times”

Hot take: for some tasks,  
while loops are annoying.
• Often, you want: “Do some_thing() 10 times”

• With a while loop you need to: 
 
 

Hot take: for some tasks,  
while loops are annoying.
• Often, you want: “Do some_thing() 10 times”

• With a while loop you need to: 
 
 

i = 0
while i < 10:
 some_thing()
 i += 1

Hot take: for some tasks,  
while loops are annoying.
• Often, you want: “Do some_thing() 10 times”

• With a while loop you need to: 
 
 

i = 0
while i < 10:
 some_thing()
 i += 1

I don’t even care about i,

it’s just bookkeeping!

Hot take: for some tasks,  
while loops are annoying.
• Often, you want: “Do some_thing() 10 times”

• With a while loop you need to: 
 
 

• Wouldn’t it be great if we could: 

i = 0
while i < 10:
 some_thing()
 i += 1

I don’t even care about i,

it’s just bookkeeping!

Hot take: for some tasks,  
while loops are annoying.
• Often, you want: “Do some_thing() 10 times”

• With a while loop you need to: 
 
 

• Wouldn’t it be great if we could: 

i = 0
while i < 10:
 some_thing()
 i += 1

do 10 times:
 some_thing()

I don’t even care about i,

it’s just bookkeeping!

Hot take: for some tasks,  
while loops are annoying.
• Often, you want: “Do some_thing() 10 times”

• With a while loop you need to: 
 
 

• Wouldn’t it be great if we could: 

i = 0
while i < 10:
 some_thing()
 i += 1

do 10 times:
 some_thing()

We (almost) can! Using for loops.

I don’t even care about i,

it’s just bookkeeping!

The for statement: syntax

for var_name in sequence:
 codeblock

The for statement: syntax

for var_name in sequence:
 codeblock

for keyword

The for statement: syntax

for var_name in sequence:
 codeblock

a variable name

for keyword

The for statement: syntax

for var_name in sequence:
 codeblock

a variable name

for keyword in keyword

The for statement: syntax

for var_name in sequence:
 codeblock

a variable name

for keyword in keyword colon

The for statement: syntax

for var_name in sequence:
 codeblock

a variable name

an indented code block: one
or more statements to be
executed for each iteration
of the loop

for keyword in keyword colon

The for statement: syntax

for var_name in sequence:
 codeblock

a variable name

an indented code block: one
or more statements to be
executed for each iteration
of the loop

for keyword

a sequence

in keyword colon

The for statement: syntax

for var_name in sequence:
 codeblock

a variable name

an indented code block: one
or more statements to be
executed for each iteration
of the loop

for keyword

a sequence
????

in keyword colon

Sequences in Python: Lists

for color in ["red", "green", "blue"]:
 print(color)

This code prints:
red
green
blue

Sequences in Python: Lists

for color in ["red", "green", "blue"]:
 print(color)

This is a list: an ordered
collection of values.

Much more on these later.

This code prints:
red
green
blue

The for statement: behavior

for color in ["red", "green", "blue"]:
 print(color)

This code prints:
red
green
blue

The for statement: behavior

for color in ["red", "green", "blue"]:
 print(color)

This code prints:
red
green
blue

The loop body is executed once for each
value in the sequence (list).

The for statement: behavior

for color in ["red", "green", "blue"]:
 print(color)

This code prints:
red
green
blue

The loop body is executed once for each
value in the sequence (list).

In each iteration, the loop variable

The for statement: behavior

for color in ["red", "green", "blue"]:
 print(color)

This code prints:
red
green
blue

The loop body is executed once for each
value in the sequence (list).

In each iteration, the loop variable (color)

The for statement: behavior

for color in ["red", "green", "blue"]:
 print(color)

This code prints:
red
green
blue

The loop body is executed once for each
value in the sequence (list).

In each iteration, the loop variable
takes on a different value from the
sequence:

(color)

The for statement: behavior

for color in ["red", "green", "blue"]:
 print(color)

This code prints:
red
green
blue

The loop body is executed once for each
value in the sequence (list).

In each iteration, the loop variable
takes on a different value from the
sequence:

(color)

("red", then "green", then "blue")

The for statement: behavior

for color in ["red", "green", "blue"]:
 print(color)

This code prints:
red
green
blue

The loop body is executed once for each
value in the sequence (list).

In each iteration, the loop variable
takes on a different value from the
sequence:

(color)

("red", then "green", then "blue")

Notice: the loop variable gets updated automatically after each iteration!

Sequences in Python: Ranges
Lists are great if you have a list of things, but what about:

Sequences in Python: Ranges

“Do some_thing() 10 times”?

Lists are great if you have a list of things, but what about:

Sequences in Python: Ranges

“Do some_thing() 10 times”? ugh.

Lists are great if you have a list of things, but what about:

Sequences in Python: Ranges

for i in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]:
 some_thing()

“Do some_thing() 10 times”? ugh.

Lists are great if you have a list of things, but what about:

Sequences in Python: Ranges

for i in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]:
 some_thing()

“Do some_thing() 10 times”? ugh.

Lists are great if you have a list of things, but what about:

New function to the rescue: range
makes it easy to generate lists like this.

Sequences in Python: Ranges

for i in range(5):
 print(i)

This code prints:
0
1
2
3
4

Sequences in Python: Ranges

for i in range(5):
 print(i)

The range function returns
a sequence of integers.

This code prints:
0
1
2
3
4

Sequences in Python: Ranges

for i in range(5):
 print(i)

The range function returns
a sequence of integers.

This code prints:
0
1
2
3
4

Not technically a list, but acts like one: more on this later

Sequences in Python:
the range function

Sequences in Python:
the range function

for i in range(5):
 print(i, end=“ “) prints: 0 1 2 3 4

Sequences in Python:
the range function

for i in range(5):
 print(i, end=“ “) prints: 0 1 2 3 4

range(a): from 0 up to but not including a

Sequences in Python:
the range function

for i in range(5):
 print(i, end=“ “) prints: 0 1 2 3 4

for i in range(2, 5):
 print(i, end=“ “) prints: 2 3 4

range(a): from 0 up to but not including a

Sequences in Python:
the range function

for i in range(5):
 print(i, end=“ “) prints: 0 1 2 3 4

for i in range(2, 5):
 print(i, end=“ “) prints: 2 3 4

range(a): from 0 up to but not including a

range(a, b): from a up to but not including b

Sequences in Python:
the range function

for i in range(5):
 print(i, end=“ “) prints: 0 1 2 3 4

for i in range(2, 5):
 print(i, end=“ “) prints: 2 3 4

for i in range(1, 8, 3):
 print(i, end=“ “) prints: 1, 4, 7

range(a): from 0 up to but not including a

range(a, b): from a up to but not including b

Sequences in Python:
the range function

for i in range(5):
 print(i, end=“ “) prints: 0 1 2 3 4

for i in range(2, 5):
 print(i, end=“ “) prints: 2 3 4

for i in range(1, 8, 3):
 print(i, end=“ “) prints: 1, 4, 7

range(a): from 0 up to but not including a

range(a, b, c): sequence from a up to but not including b
 counting in increments of c

range(a, b): from a up to but not including b

The range function returns a sequence of integers.

It’s not technically a list: print(range(4)) does not print

[1, 2, 3]

To turn the range into a list (e.g., to print it), we can use
the list function:

Converting ranges to lists

list(range(2, 5)) => [2, 3, 4]

Range function: Demo
• demo in shell

• one, two, and three argument versions

• ranges.py

Range function: Demo

Range function: Demo

for posterity: see ranges.py

QOTD

for x in range(1,4):
 print (x + x * x, end=str(x))

Size of a range
for i in range(5):
 print(i, end=“ “) prints: 0 1 2 3 4

for i in range(2, 5):
 print(i, end=“ “) prints: 2 3 4

for i in range(1, 8, 3):
 print(i, end=“ “) prints: 1, 4, 7

Exercise: How many elements are in range(n) ?

A. 0

B. n-1

C. n

D. 10

Size of a range
for i in range(5):
 print(i, end=“ “) prints: 0 1 2 3 4

for i in range(2, 5):
 print(i, end=“ “) prints: 2 3 4

for i in range(1, 8, 3):
 print(i, end=“ “) prints: 1, 4, 7

Exercise: How many elements are in range(a, b)?

A. a-b

B. b-a-1

C. b-a+1

D. b-a

QOTD
When running the code below, what pairs of
values could be assigned to the variables x
and y so that the program prints WWU 43
times? Select all correct choices.

x =
y =
for z in range(x, y):
 print("WWU")

x: 0 y: 44

x: -21 y: 22

x: -21 y:21

x: -789 y: -746

x: -789 y: 746

x: 1 y: 44

Equivalent question:  
for which of these is y - x == 43?

Back to for loops…

for var_name in sequence:
 codeblock

a variable name

an indented code block: one
or more statements to be
executed for each iteration
of the loop

for keyword in keyword

????

Back to for loops…

for var_name in sequence:
 codeblock

a variable name

an indented code block: one
or more statements to be
executed for each iteration
of the loop

for keyword

a sequence: either a list

or a call to range

in keyword

while loops are annoying.
• Often, you want: “Do some_thing() 10 times”

• With a while loop you need to: 
 
 

• Wouldn’t it be great if we could: 
 

i = 0
while i < 10:
 some_thing()
 i += 1

I don’t even care about i,

it’s just bookkeeping!

while loops are annoying.
• Often, you want: “Do some_thing() 10 times”

• With a while loop you need to: 
 
 

• Wouldn’t it be great if we could: 
 

i = 0
while i < 10:
 some_thing()
 i += 1

for i in range(10):
 some_thing()

I don’t even care about i,

it’s just bookkeeping!

while loops are annoying.
• Often, you want: “Do some_thing() 10 times”

• With a while loop you need to: 
 
 

• Wouldn’t it be great if we could: 
 

i = 0
while i < 10:
 some_thing()
 i += 1

for i in range(10):
 some_thing()

We can!

I don’t even care about i,

it’s just bookkeeping!

Revisiting Repetition
for var_name in sequence:
 codeblock

Revisiting Repetition

• balance3.py - rewrite yearly bank account
balance with a for loop

for var_name in sequence:
 codeblock

Revisiting Repetition

• balance3.py - rewrite yearly bank account
balance with a for loop

• Average of 100 random numbers

for var_name in sequence:
 codeblock

Revisiting Repetition

• balance3.py - rewrite yearly bank account
balance with a for loop

• Average of 100 random numbers

• New problem: print all possible outcomes of
two 6-sided dice.

for var_name in sequence:
 codeblock

Nesting loops?
Task: Print out all
possible rolls of two
six-sided dice.

1 1

1 2

1 3

1 4

1 5

1 6

2 1

2 2

2 3

2 4

…

6 4

6 5

6 6

Program output:

(and so on)

Nesting loops!
Task: Print out all
possible rolls of two
six-sided dice.

1 1

1 2

1 3

1 4

1 5

1 6

2 1

2 2

2 3

2 4

…

6 4

6 5

6 6

Program output:

(and so on)

Nesting loops!
Task: Print out all
possible rolls of two
six-sided dice.

1 1

1 2

1 3

1 4

1 5

1 6

2 1

2 2

2 3

2 4

…

6 4

6 5

6 6

Program output:

(and so on)

Break down the problem:

Nesting loops!
Task: Print out all
possible rolls of two
six-sided dice.

1 1

1 2

1 3

1 4

1 5

1 6

2 1

2 2

2 3

2 4

…

6 4

6 5

6 6

Program output:

(and so on)

Break down the problem:
• print 1 followed by each of 1 to 6

Nesting loops!
Task: Print out all
possible rolls of two
six-sided dice.

1 1

1 2

1 3

1 4

1 5

1 6

2 1

2 2

2 3

2 4

…

6 4

6 5

6 6

Program output:

(and so on)

Break down the problem:
• print 1 followed by each of 1 to 6
• print 2 followed by each of 1 to 6

Nesting loops!
Task: Print out all
possible rolls of two
six-sided dice.

1 1

1 2

1 3

1 4

1 5

1 6

2 1

2 2

2 3

2 4

…

6 4

6 5

6 6

Program output:

(and so on)

Break down the problem:
• print 1 followed by each of 1 to 6
• print 2 followed by each of 1 to 6
• and so on

Nesting loops!
Task: Print out all
possible rolls of two
six-sided dice.

1 1

1 2

1 3

1 4

1 5

1 6

2 1

2 2

2 3

2 4

…

6 4

6 5

6 6

Program output:

(and so on)

Break down the problem:
• print 1 followed by each of 1 to 6
• print 2 followed by each of 1 to 6
• and so on

Repetitive task

Nesting loops!
Task: Print out all
possible rolls of two
six-sided dice.

1 1

1 2

1 3

1 4

1 5

1 6

2 1

2 2

2 3

2 4

…

6 4

6 5

6 6

Program output:

(and so on)

Break down the problem:
• print 1 followed by each of 1 to 6
• print 2 followed by each of 1 to 6
• and so on

Repetitive task

Repetitive task

!
Nesting loops! Demo

• dice.py - nested for loops to print all
ordered pairs of numbers from 1 to 6
(inclusive)

Last time: Modules
The Python Standard Library is a collection of
modules containing many more functions.

To use functions in a module, you need to import
the module using an import statement:

By convention, we put all import statements at the
top of programs.

import module

Last time: Modules
The Python Standard Library is a collection of
modules containing many more functions.

To use functions in a module, you need to import
the module using an import statement:

By convention, we put all import statements at the
top of programs.

(replace the in this font with the specific module name)

import module

turtle module
Python has Turtles!

turtle module
Python has Turtles!

import turtle

turtle module
Python has Turtles!

import turtle

turtle module
Python has Turtles!

import turtle
scott = turtle.Turtle()

turtle module
Python has Turtles!

import turtle
scott = turtle.Turtle()

What does this do?

turtle module
Python has Turtles!

import turtle
scott = turtle.Turtle()

What does this do?

turtle module
Python has Turtles!

import turtle
scott = turtle.Turtle()

What does this do?

Let’s play with it.

Demo: basic turtle usage

Demo: basic turtle usage
• forward, backward

• left, right

• pendown/down

• penup/up

Creating and Using Objects
import turtle
scott = turtle.Turtle()

Creating and Using Objects

The Turtle() function starts with a capital letter. 
By convention this indicates that it is a special kind of function called a
constructor that creates (and returns) new objects of type Turtle.

import turtle
scott = turtle.Turtle()

https://docs.python.org/3.3/library/turtle.html?highlight=turtle
https://docs.python.org/3.3/library/turtle.html?highlight=turtle

Creating and Using Objects

The Turtle() function starts with a capital letter. 
By convention this indicates that it is a special kind of function called a
constructor that creates (and returns) new objects of type Turtle.

The Turtle() function returns a Turtle object, and the variable scott now
refers to it.

import turtle
scott = turtle.Turtle()

https://docs.python.org/3.3/library/turtle.html?highlight=turtle
https://docs.python.org/3.3/library/turtle.html?highlight=turtle

Creating and Using Objects

The Turtle() function starts with a capital letter. 
By convention this indicates that it is a special kind of function called a
constructor that creates (and returns) new objects of type Turtle.

The Turtle() function returns a Turtle object, and the variable scott now
refers to it.

Objects can have functions associated with them, accessed via the dot
notation, e.g.: 
 turtle.forward(10) # moves the turtle forward 10 units  
 turtle.left(90) # turns the turtle left 90 degrees

import turtle
scott = turtle.Turtle()

https://docs.python.org/3.3/library/turtle.html?highlight=turtle
https://docs.python.org/3.3/library/turtle.html?highlight=turtle

Creating and Using Objects

The Turtle() function starts with a capital letter. 
By convention this indicates that it is a special kind of function called a
constructor that creates (and returns) new objects of type Turtle.

The Turtle() function returns a Turtle object, and the variable scott now
refers to it.

Objects can have functions associated with them, accessed via the dot
notation, e.g.: 
 turtle.forward(10) # moves the turtle forward 10 units  
 turtle.left(90) # turns the turtle left 90 degrees

import turtle
scott = turtle.Turtle()

functions that belong to an object are called its methods

https://docs.python.org/3.3/library/turtle.html?highlight=turtle
https://docs.python.org/3.3/library/turtle.html?highlight=turtle

Creating and Using Objects

The Turtle() function starts with a capital letter. 
By convention this indicates that it is a special kind of function called a
constructor that creates (and returns) new objects of type Turtle.

The Turtle() function returns a Turtle object, and the variable scott now
refers to it.

Objects can have functions associated with them, accessed via the dot
notation, e.g.: 
 turtle.forward(10) # moves the turtle forward 10 units  
 turtle.left(90) # turns the turtle left 90 degrees

What methods do Turtles have? Lots! 
Check the docs: https://docs.python.org/3.3/library/turtle.html?
highlight=turtle

import turtle
scott = turtle.Turtle()

functions that belong to an object are called its methods

https://docs.python.org/3.3/library/turtle.html?highlight=turtle
https://docs.python.org/3.3/library/turtle.html?highlight=turtle

turtle module
Python has Turtles!

import turtle
scott = turtle.Turtle()

turtle module
Python has Turtles!

import turtle
scott = turtle.Turtle()

Basic turtle methods
• forward: moves the turtle forward

• left/right: turns the turtle

• penup/pendown: turns drawing on and off

Creating and Using Objects
import turtle
scott = turtle.Turtle()

Creating and Using Objects

The Turtle() function starts with a capital letter. 
By convention this indicates that it is a special kind of function called a
constructor that creates (and returns) new objects of type Turtle.

import turtle
scott = turtle.Turtle()

https://docs.python.org/3.3/library/turtle.html?highlight=turtle
https://docs.python.org/3.3/library/turtle.html?highlight=turtle

Creating and Using Objects

The Turtle() function starts with a capital letter. 
By convention this indicates that it is a special kind of function called a
constructor that creates (and returns) new objects of type Turtle.

The Turtle() function returns a Turtle object, and the variable scott now
refers to it.

import turtle
scott = turtle.Turtle()

https://docs.python.org/3.3/library/turtle.html?highlight=turtle
https://docs.python.org/3.3/library/turtle.html?highlight=turtle

Creating and Using Objects

The Turtle() function starts with a capital letter. 
By convention this indicates that it is a special kind of function called a
constructor that creates (and returns) new objects of type Turtle.

The Turtle() function returns a Turtle object, and the variable scott now
refers to it.

Objects can have functions associated with them, accessed via the dot
notation, e.g.: 
 turtle.forward(10) # moves the turtle forward 10 units  
 turtle.left(90) # turns the turtle left 90 degrees

import turtle
scott = turtle.Turtle()

https://docs.python.org/3.3/library/turtle.html?highlight=turtle
https://docs.python.org/3.3/library/turtle.html?highlight=turtle

Creating and Using Objects

The Turtle() function starts with a capital letter. 
By convention this indicates that it is a special kind of function called a
constructor that creates (and returns) new objects of type Turtle.

The Turtle() function returns a Turtle object, and the variable scott now
refers to it.

Objects can have functions associated with them, accessed via the dot
notation, e.g.: 
 turtle.forward(10) # moves the turtle forward 10 units  
 turtle.left(90) # turns the turtle left 90 degrees

import turtle
scott = turtle.Turtle()

functions that belong to an object are called its methods

https://docs.python.org/3.3/library/turtle.html?highlight=turtle
https://docs.python.org/3.3/library/turtle.html?highlight=turtle

Creating and Using Objects

The Turtle() function starts with a capital letter. 
By convention this indicates that it is a special kind of function called a
constructor that creates (and returns) new objects of type Turtle.

The Turtle() function returns a Turtle object, and the variable scott now
refers to it.

Objects can have functions associated with them, accessed via the dot
notation, e.g.: 
 turtle.forward(10) # moves the turtle forward 10 units  
 turtle.left(90) # turns the turtle left 90 degrees

What methods do Turtles have? Lots! 
Check the docs: https://docs.python.org/3.3/library/turtle.html?
highlight=turtle

import turtle
scott = turtle.Turtle()

functions that belong to an object are called its methods

https://docs.python.org/3.3/library/turtle.html?highlight=turtle
https://docs.python.org/3.3/library/turtle.html?highlight=turtle

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:
1. Move forward 100

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:
1. Move forward 100
2. Turn left 90 degrees

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:
1. Move forward 100
2. Turn left 90 degrees
3. Move forward 100

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:
1. Move forward 100
2. Turn left 90 degrees
3. Move forward 100
4. Turn left 90 degrees

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:
1. Move forward 100
2. Turn left 90 degrees
3. Move forward 100
4. Turn left 90 degrees
5. Move forward 100

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:
1. Move forward 100
2. Turn left 90 degrees
3. Move forward 100
4. Turn left 90 degrees
5. Move forward 100
6. Turn left 90 degrees

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:
1. Move forward 100
2. Turn left 90 degrees
3. Move forward 100
4. Turn left 90 degrees
5. Move forward 100
6. Turn left 90 degrees
7. Move forward 100

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:
1. Move forward 100
2. Turn left 90 degrees
3. Move forward 100
4. Turn left 90 degrees
5. Move forward 100
6. Turn left 90 degrees
7. Move forward 100
8. (Turn left 90 degrees)

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:
1. Move forward 100
2. Turn left 90 degrees
3. Move forward 100
4. Turn left 90 degrees
5. Move forward 100
6. Turn left 90 degrees
7. Move forward 100
8. (Turn left 90 degrees)

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:
1. Move forward 100
2. Turn left 90 degrees
3. Move forward 100
4. Turn left 90 degrees
5. Move forward 100
6. Turn left 90 degrees
7. Move forward 100
8. (Turn left 90 degrees)

Can we do better?

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:

Repeat 4 times:

1. move forward 100

2. turn left 90

Algorithms with Turtles
Task: Write pseudocode for an algorithm to
draw a square with side length 100:

Repeat 4 times:

1. move forward 100

2. turn left 90

Demo

Demo
• turtle_square.py: Write a loop-based

program that makes a turtle and draws a
square with it.

while vs for
Are for loops always better?

while vs for
Task: Generate and print random integers
between 1 and 10 (inclusive) until one of the
random numbers exceeds 8.

Would you use a for
loop or a while loop?

while vs for
Task: Ask the user for a number (n), then print
100 random numbers between 0 and n.

Would you use a for
loop or a while loop?

while vs for
Task: Sum the numbers from 1 to 340,
leaving out those divisible by 5.

Would you use a for
loop or a while loop?

Generalized Squares 
AKA Equilateral Polygons

Task: Write code that makes the Turtle object
scott draw an n-sided polygon, where n and
the length of each side are given by the user.

import turtle

scott = turtle.Turtle()
for i in range(4):
 scott.forward(100)
 scott.left(90)

Hint: the total amount the turtle needs to turn is 360 degrees.

Code from turtle_square:

Additional Suggested
Practice Problems

1. Make a Turtle do a random walk: write a
program that repeats the following 100
times:

• Move the turtle a random distance forward.

• Turn the turtle a random number of degrees.

2. Re-write the dice exercise from last time
using for loops (it’s simpler this way!)

