
CSCI 141
Lecture 10:

Modules, random, loops loops loops loops, range

CSCI 141
Lecture 10:

Modules, random, loops loops loops loops, range
fo(u)r loops, get it?

Happenings
CS Mentors Workshop: COMMAND THE LINE!
Wednesday (today!) 10/16 - 4pm CF 165

Announcements

• A3 is out! Due next Tuesday.

Announcements

• A3 is out! Due next Tuesday.

• Start early so you have plenty of time to study for…

Announcements

• A3 is out! Due next Tuesday.

• Start early so you have plenty of time to study for…

• The midterm exam is a week from Friday!

Announcements

• A3 is out! Due next Tuesday.

• Start early so you have plenty of time to study for…

• The midterm exam is a week from Friday!

• Covers material through Monday.

Announcements

Study Tips

Study Tips
Reading is not enough: solve problems.

Study Tips
Reading is not enough: solve problems.

• Goals slides: can you do these things? Try and see.

Study Tips
Reading is not enough: solve problems.

• Goals slides: can you do these things? Try and see.

• Terminology: be able to discuss the meaning of all words that appear in
blue in the slides

Study Tips
Reading is not enough: solve problems.

• Goals slides: can you do these things? Try and see.

• Terminology: be able to discuss the meaning of all words that appear in
blue in the slides

• Socrative questions: make sure you know how to solve them. Then, try
code in Thonny or compare answers with your peers.

Study Tips
Reading is not enough: solve problems.

• Goals slides: can you do these things? Try and see.

• Terminology: be able to discuss the meaning of all words that appear in
blue in the slides

• Socrative questions: make sure you know how to solve them. Then, try
code in Thonny or compare answers with your peers.

• Demo code: solve the same problem without without looking at my code.

Study Tips
Reading is not enough: solve problems.

• Goals slides: can you do these things? Try and see.

• Terminology: be able to discuss the meaning of all words that appear in
blue in the slides

• Socrative questions: make sure you know how to solve them. Then, try
code in Thonny or compare answers with your peers.

• Demo code: solve the same problem without without looking at my code.

• QOTDs: still available on Canvas - make sure you know how to solve them.

Study Tips
Reading is not enough: solve problems.

• Goals slides: can you do these things? Try and see.

• Terminology: be able to discuss the meaning of all words that appear in
blue in the slides

• Socrative questions: make sure you know how to solve them. Then, try
code in Thonny or compare answers with your peers.

• Demo code: solve the same problem without without looking at my code.

• QOTDs: still available on Canvas - make sure you know how to solve them.

• Exercises from the eBook

Study Tips
Reading is not enough: solve problems.

• Goals slides: can you do these things? Try and see.

• Terminology: be able to discuss the meaning of all words that appear in
blue in the slides

• Socrative questions: make sure you know how to solve them. Then, try
code in Thonny or compare answers with your peers.

• Demo code: solve the same problem without without looking at my code.

• QOTDs: still available on Canvas - make sure you know how to solve them.

• Exercises from the eBook

A study guide including sample coding questions is coming later this week.

Goals
• Know how to import a module and call its functions

• Know how to generate random numbers using the random
module's randint function.

• Know how to find the documentation for a module and its
functions to learn what they do.

• Know the syntax and behavior of the for statement
(for loop)

• Know how to use the range function in the header
of a for loop.

Last time:
the while statement

while [condition]:
 [indented code block]

a boolean expression (the condition)
a colon :

an indented code block: one
or more statements to be
executed while the boolean
expression evaluates to True

Not so different from an if statement:

while keyword

The while statement:  
Semantics (Behavior)

If statement:

1. Evaluate the condition

2. If true, execute body (code
block), then continue on.

While statement:

1. Evaluate the condition

2. If true, execute body,
otherwise skip step 3 and
continue on.

3. Go back to step 1

The while statement:  
A Working Example

print account balance after each
of five years:
balance = 100.0 # starting balance
year = 1
while year <= 5:
 balance = balance + (0.02 * balance)
 print(balance)
 year = year + 1

Terminology notes:

• the line with while and the condition is the loop header

• the code block is the loop body

• the entire construct (header and body) is a while statement

• usually people call them while loops instead

QOTD
What is the output of the following code?

count = 10
while count < 21:
 print(count, end=" ")
 count += 3

QOTD
What are the values of m and n after this code
is executed?

n = 12345
m = 0
while n != 0:
 m = (10 * m) + (n % 10)
 n //= 10

What can you do with while
loops?

• Anything you can write code to do!

• Not just counting.

Demo: Not just counting

Demo: Not just counting
• sum_inputs.py:

• sum user-provided positive numbers until a negative
number is entered

Other Peoples’ Code
We’ve already used code other people wrote by
calling built-in Python functions:

• print, input, type

Built-in functions are special because they’re
always available.

Many other functions exist in the Python
Standard Library, which is a collection of
modules containing many more functions.

Other Peoples’ Code
An example: I want to generate a random
integer between 0 and 10.

import random

Other Peoples’ Code
An example: I want to generate a random
integer between 0 and 10.

I don’t know how to do this.

import random

Other Peoples’ Code
An example: I want to generate a random
integer between 0 and 10.

I don’t know how to do this.
Someone who does has written some functions for me.

They live in the random module:

import random

Other Peoples’ Code
An example: I want to generate a random
integer between 0 and 10.

I don’t know how to do this.
Someone who does has written some functions for me.

They live in the random module:

I could go look at the source code…

import random

Other Peoples’ Code
An example: I want to generate a random
integer between 0 and 10.

import random

I don’t know how to do this.
Someone who does has written some functions for me.

They live in the random module:

I could go look at the source code…

…
…

Other Peoples’ Code
An example: I want to generate a random
integer between 0 and 10.

I don’t know how to do this.
Someone who does has written some functions for me.

They live in the random module:

I could go look at the source code… but I’d rather just use
their functions without knowing how they work.

num = random.randint(0,10)

import random

Other Peoples’ Code

Two questions:

1. What is this syntax about?

2. How do I know what the function does?

import random
num = random.randint(0,10)

Using Modules: Syntax
The Python Standard Library is a collection of
modules containing many more functions.

To use functions in a module, you need to import
the module using an import statement:

By convention, we put all import statements at the
top of programs.

import module

Using Modules: Syntax
The Python Standard Library is a collection of
modules containing many more functions.

To use functions in a module, you need to import
the module using an import statement:

By convention, we put all import statements at the
top of programs.

(replace the in this font with the specific module name)

import module

Using Modules: Syntax
Once you’ve imported a module:

you can call functions in that module using the
following syntax:

random.randint(0,10)

import random

Using Modules: Syntax
Once you’ve imported a module:

you can call functions in that module using the
following syntax:

Module name

random.randint(0,10)

import random

Using Modules: Syntax
Once you’ve imported a module:

you can call functions in that module using the
following syntax:

Module name Function call (the usual syntax)

random.randint(0,10)

import random

Using Modules: Syntax
Once you’ve imported a module:

you can call functions in that module using the
following syntax:

DotModule name Function call (the usual syntax)

random.randint(0,10)

import random

Other Peoples’ Code

Two questions:

1. What is this syntax about?

2. How do I know what the function does?

import random
num = random.randint(0,10)

Other Peoples’ Code

Two questions:

1. What is this syntax about?

2. How do I know what the function does?
Read about it in the Python documentation.

My approach, in practice:

1. Google “python 3 <whatever>”

2. Make sure the URL is from python.org and has version python 3.x

example

import random
num = random.randint(0,10)

http://python.org
https://www.google.com/search?q=python+3+random

math module
• The math module has useful stuff!

• You can read about it in the documentation.

• logarithms, trigonometry, …

• Modules can also contain values:

https://docs.python.org/3/library/math.html

You try it out:
Write a program to compute and print the
average of 100 random numbers between 0
and 10.

Hot take: for some tasks,  
while loops are annoying.

Hot take: for some tasks,  
while loops are annoying.
• Often, you want: “Do some_thing() 10 times”

Hot take: for some tasks,  
while loops are annoying.
• Often, you want: “Do some_thing() 10 times”

• With a while loop you need to: 
 
 

Hot take: for some tasks,  
while loops are annoying.
• Often, you want: “Do some_thing() 10 times”

• With a while loop you need to: 
 
 

i = 0
while i < 10:
 some_thing()
 i += 1

Hot take: for some tasks,  
while loops are annoying.
• Often, you want: “Do some_thing() 10 times”

• With a while loop you need to: 
 
 

i = 0
while i < 10:
 some_thing()
 i += 1

I don’t even care about i,

it’s just bookkeeping!

Hot take: for some tasks,  
while loops are annoying.
• Often, you want: “Do some_thing() 10 times”

• With a while loop you need to: 
 
 

• Wouldn’t it be great if we could: 

i = 0
while i < 10:
 some_thing()
 i += 1

I don’t even care about i,

it’s just bookkeeping!

Hot take: for some tasks,  
while loops are annoying.
• Often, you want: “Do some_thing() 10 times”

• With a while loop you need to: 
 
 

• Wouldn’t it be great if we could: 

i = 0
while i < 10:
 some_thing()
 i += 1

do 10 times:
 some_thing()

I don’t even care about i,

it’s just bookkeeping!

Hot take: for some tasks,  
while loops are annoying.
• Often, you want: “Do some_thing() 10 times”

• With a while loop you need to: 
 
 

• Wouldn’t it be great if we could: 

i = 0
while i < 10:
 some_thing()
 i += 1

do 10 times:
 some_thing()

We (almost) can! Using for loops.

I don’t even care about i,

it’s just bookkeeping!

The for statement: syntax

for var_name in sequence:
 codeblock

The for statement: syntax

for var_name in sequence:
 codeblock

for keyword

The for statement: syntax

for var_name in sequence:
 codeblock

a variable name

for keyword

The for statement: syntax

for var_name in sequence:
 codeblock

a variable name

for keyword in keyword

The for statement: syntax

for var_name in sequence:
 codeblock

a variable name

for keyword in keyword colon

The for statement: syntax

for var_name in sequence:
 codeblock

a variable name

an indented code block: one
or more statements to be
executed for each iteration
of the loop

for keyword in keyword colon

The for statement: syntax

for var_name in sequence:
 codeblock

a variable name

an indented code block: one
or more statements to be
executed for each iteration
of the loop

for keyword

a sequence

in keyword colon

The for statement: syntax

for var_name in sequence:
 codeblock

a variable name

an indented code block: one
or more statements to be
executed for each iteration
of the loop

for keyword

a sequence
????

in keyword colon

Sequences in Python: Lists

for color in ["red", "green", "blue"]:
 print(color)

This code prints:
red
green
blue

Sequences in Python: Lists

for color in ["red", "green", "blue"]:
 print(color)

This is a list: an ordered
collection of values.

Much more on these later.

This code prints:
red
green
blue

The for statement: behavior

for color in ["red", "green", "blue"]:
 print(color)

This code prints:
red
green
blue

The for statement: behavior

for color in ["red", "green", "blue"]:
 print(color)

This code prints:
red
green
blue

The loop body is executed once for each
value in the sequence (list).

The for statement: behavior

for color in ["red", "green", "blue"]:
 print(color)

This code prints:
red
green
blue

The loop body is executed once for each
value in the sequence (list).

In each iteration, the loop variable

The for statement: behavior

for color in ["red", "green", "blue"]:
 print(color)

This code prints:
red
green
blue

The loop body is executed once for each
value in the sequence (list).

In each iteration, the loop variable (color)

The for statement: behavior

for color in ["red", "green", "blue"]:
 print(color)

This code prints:
red
green
blue

The loop body is executed once for each
value in the sequence (list).

In each iteration, the loop variable
takes on a different value from the
sequence:

(color)

The for statement: behavior

for color in ["red", "green", "blue"]:
 print(color)

This code prints:
red
green
blue

The loop body is executed once for each
value in the sequence (list).

In each iteration, the loop variable
takes on a different value from the
sequence:

(color)

("red", then "green", then "blue")

The for statement: behavior

for color in ["red", "green", "blue"]:
 print(color)

This code prints:
red
green
blue

The loop body is executed once for each
value in the sequence (list).

In each iteration, the loop variable
takes on a different value from the
sequence:

(color)

("red", then "green", then "blue")

Notice: the loop variable gets updated automatically after each iteration!

Sequences in Python: Ranges
Lists are great if you have a list of things, but what about:

Sequences in Python: Ranges

“Do some_thing() 10 times”?

Lists are great if you have a list of things, but what about:

Sequences in Python: Ranges

“Do some_thing() 10 times”? ugh.

Lists are great if you have a list of things, but what about:

Sequences in Python: Ranges

for i in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]:
 some_thing()

“Do some_thing() 10 times”? ugh.

Lists are great if you have a list of things, but what about:

Sequences in Python: Ranges

for i in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]:
 some_thing()

“Do some_thing() 10 times”? ugh.

Lists are great if you have a list of things, but what about:

New function to the rescue: range
makes it easy to generate lists like this.

Sequences in Python: Ranges

for i in range(5):
 print(i)

This code prints:
0
1
2
3
4

Sequences in Python: Ranges

for i in range(5):
 print(i)

The range function returns
a sequence of integers.

This code prints:
0
1
2
3
4

Sequences in Python: Ranges

for i in range(5):
 print(i)

The range function returns
a sequence of integers.

This code prints:
0
1
2
3
4

Not technically a list, but acts like one: more on this later

Sequences in Python:
the range function

Sequences in Python:
the range function

for i in range(5):
 print(i, end=“ “) prints: 0 1 2 3 4

Sequences in Python:
the range function

for i in range(5):
 print(i, end=“ “) prints: 0 1 2 3 4

range(a): from 0 up to but not including a

Sequences in Python:
the range function

for i in range(5):
 print(i, end=“ “) prints: 0 1 2 3 4

for i in range(2, 5):
 print(i, end=“ “) prints: 2 3 4

range(a): from 0 up to but not including a

Sequences in Python:
the range function

for i in range(5):
 print(i, end=“ “) prints: 0 1 2 3 4

for i in range(2, 5):
 print(i, end=“ “) prints: 2 3 4

range(a): from 0 up to but not including a

range(a, b): from a up to but not including b

Sequences in Python:
the range function

for i in range(5):
 print(i, end=“ “) prints: 0 1 2 3 4

for i in range(2, 5):
 print(i, end=“ “) prints: 2 3 4

for i in range(1, 8, 3):
 print(i, end=“ “) prints: 1, 4, 7

range(a): from 0 up to but not including a

range(a, b): from a up to but not including b

Sequences in Python:
the range function

for i in range(5):
 print(i, end=“ “) prints: 0 1 2 3 4

for i in range(2, 5):
 print(i, end=“ “) prints: 2 3 4

for i in range(1, 8, 3):
 print(i, end=“ “) prints: 1, 4, 7

range(a): from 0 up to but not including a

range(a, b, c): sequence from a up to but not including b
 counting in increments of c

range(a, b): from a up to but not including b

The range function returns a sequence of integers.

It’s not technically a list: print(range(4)) does not print

[1, 2, 3]

To turn the range into a list (e.g., to print it), we can use
the list function:

Converting ranges to lists

list(range(2, 5)) => [2, 3, 4]

Range function: Demo
• demo in shell

• one, two, and three argument versions

• ranges.py - poll questions

Range function: Demo

Back to for loops…

for var_name in sequence:
 codeblock

a variable name

an indented code block: one
or more statements to be
executed for each iteration
of the loop

for keyword in keyword

????

Back to for loops…

for var_name in sequence:
 codeblock

a variable name

an indented code block: one
or more statements to be
executed for each iteration
of the loop

for keyword

a sequence: either a list

or a call to range

in keyword

while loops are annoying.

while loops are annoying.
• Often, you want: “Do some_thing() 10 times”

while loops are annoying.
• Often, you want: “Do some_thing() 10 times”

• With a while loop you need to: 
 
 

while loops are annoying.
• Often, you want: “Do some_thing() 10 times”

• With a while loop you need to: 
 
 

i = 0
while i < 10:
 some_thing()
 i += 1

while loops are annoying.
• Often, you want: “Do some_thing() 10 times”

• With a while loop you need to: 
 
 

i = 0
while i < 10:
 some_thing()
 i += 1

I don’t even care about i,

it’s just bookkeeping!

while loops are annoying.
• Often, you want: “Do some_thing() 10 times”

• With a while loop you need to: 
 
 

• Wouldn’t it be great if we could: 

i = 0
while i < 10:
 some_thing()
 i += 1

I don’t even care about i,

it’s just bookkeeping!

while loops are annoying.
• Often, you want: “Do some_thing() 10 times”

• With a while loop you need to: 
 
 

• Wouldn’t it be great if we could: 

i = 0
while i < 10:
 some_thing()
 i += 1

for i in range(10):
 some_thing()

I don’t even care about i,

it’s just bookkeeping!

while loops are annoying.
• Often, you want: “Do some_thing() 10 times”

• With a while loop you need to: 
 
 

• Wouldn’t it be great if we could: 

i = 0
while i < 10:
 some_thing()
 i += 1

for i in range(10):
 some_thing()

We can!

I don’t even care about i,

it’s just bookkeeping!

Revisiting Repetition

• balance3.py - rewrite yearly bank account
balance with a for loop

• Average of 100 random numbers

for var_name in sequence:
 codeblock

while vs for
Task: Generate and print random integers
between 1 and 10 (inclusive) until one of the
random numbers exceeds 8.

Would you use a for
loop or a while loop?

while vs for
Task: Ask the user for a number (n), then print
100 random numbers between 0 and n.

Would you use a for
loop or a while loop?

while vs for
Task: Sum the numbers from 1 to 340,
leaving out those divisible by 5.

Would you use a for
loop or a while loop?

A1 debrief

