
CSCI 141
Lecture 9:

Repetition: Repetition, the while statement,
Repetition, Repetition, Modules

Announcements

• A2 is due tomorrow night!

Announcements

• A2 is due tomorrow night!

• Q2: Write a program called quadratic.py that takes three
floating-point numbers as command line arguments(!)

Announcements

• A2 is due tomorrow night!

• Q2: Write a program called quadratic.py that takes three
floating-point numbers as command line arguments(!)

• A3 will be out tomorrow.

Announcements

• A2 is due tomorrow night!

• Q2: Write a program called quadratic.py that takes three
floating-point numbers as command line arguments(!)

• A3 will be out tomorrow.

• Due next Tuesday 10/22

Announcements

• A2 is due tomorrow night!

• Q2: Write a program called quadratic.py that takes three
floating-point numbers as command line arguments(!)

• A3 will be out tomorrow.

• Due next Tuesday 10/22

• Midterm exam is a week from Friday!

Announcements

• A2 is due tomorrow night!

• Q2: Write a program called quadratic.py that takes three
floating-point numbers as command line arguments(!)

• A3 will be out tomorrow.

• Due next Tuesday 10/22

• Midterm exam is a week from Friday!

• Notes on how to study coming up next lecture.

Announcements

Goals
• Understand the syntax and behavior of the
while statement (also known as while loop).

• Know how to use in-place operators: +=, -=,
etc.

• Know how to import a module and call its
functions

• Know how to generate random numbers using the random
module's randrange function.

Last time: if statements

if isRaining:
 print("You should wear a raincoat!")

if keyword a boolean expression (the condition)
a colon :

an indented code block: one
or more statements to be
executed if the boolean
expression evaluates to True

if isRaining and not isWindy:
 print("Bring an umbrella!")
elif isRaining and isWindy:
 print("Wear a raincoat!")
else:
 print("No rain gear needed!)

Last Time:  
Chained Conditionals

elif keyword

if isRaining and not isWindy:
 print("Bring an umbrella!")
elif isRaining and isWindy:
 print("Wear a raincoat!")
else:
 print("No rain gear needed!)

Last Time:  
Chained Conditionals

elif keyword

an indented  
code block  
to be executed if:

• none of the above

conditions was True

• and this elif’s

condition is True

if isRaining and not isWindy:
 print("Bring an umbrella!")
elif isRaining and isWindy:
 print("Wear a raincoat!")
else:
 print("No rain gear needed!)

an indented code block to be
executed if the none of the
above conditions was true

Last Time:  
Chained Conditionals

elif keyword

an indented  
code block  
to be executed if:

• none of the above

conditions was True

• and this elif’s

condition is True

if isRaining and not isWindy:
 print("Bring an umbrella!")
elif isRaining and isWindy:
 print("Wear a raincoat!")
else:
 print("No rain gear needed!)

an indented code block to be
executed if the none of the
above conditions was true

Last Time:  
Chained Conditionals

elif keyword

an indented  
code block  
to be executed if:

• none of the above

conditions was True

• and this elif’s

condition is True
(this behaves exactly like

nesting an if inside each else)

if isRaining and not isWindy:
 print("Bring an umbrella!")
elif isRaining and isWindy:
 print("Wear a raincoat!")
else:
 print("No rain gear needed!)

an indented code block to be
executed if the none of the
above conditions was true

Last Time:  
Chained Conditionals

elif keyword

an indented  
code block  
to be executed if:

• none of the above

conditions was True

• and this elif’s

condition is True

(the else clause is optional)
(this behaves exactly like

nesting an if inside each else)

if (num_tacos == 32):
 print("32 tacos")
elif (num_tacos < 32):
 print("Too few tacos")
elif (num_tacos == 32):
 print("32 tacos")
elif (num_tacos % 5 == 0):
 print("Oh yes, tacos!")
else:
 print("Too many tacos")

Program 1:

QOTD
Give the smallest positive
integer value for the variable
num_tacos such that the three
programs print exactly the same
thing when they are executed.

QOTD
if (num_tacos == 32):
 print("32 tacos")
if (num_tacos < 32):
 print("Too few tacos")
if (num_tacos == 33):
 print("33 tacos")
if (num_tacos % 5 == 0):
 print("Oh yes, tacos!")
else:
 print ("Too many tacos")

Program 2: Give the smallest positive
integer value for the variable
num_tacos such that the three
programs print exactly the same
thing when they are executed.

if (num_tacos == 32):
 print("32 tacos")
else:
 if (num_tacos < 32):
 print("Too few tacos")
 else:
 if (num_tacos == 34):
 print("34 tacos")
 else:
 if (num_tacos % 5 == 0):
 print("Oh yes, tacos!")
 else:
 print ("Too many tacos")

Program 3:
QOTD

Give the smallest positive
integer value for the variable
num_tacos such that the three
programs print exactly the same
thing when they are executed.

Today: Repetition
• So far, we’ve seen how to:

• Print things to the screen and replace your calculator

• Represent complicated boolean expressions and
execute different code based on their truth values.

• So far we haven’t seen how to:

• Do anything that you couldn’t do yourself, given pencil
and paper and a few minutes to step through the code.

Motivation
Anyone really good at tongue twisters?

Pad kid poured curd pulled cod.
Pad kid poured curd pulled cod.
Pad kid poured curd pulled cod.
Pad kid poured curd pulled cod.
Pad kid poured curd pulled cod.

This is (according to MIT psychologists*) the
hardest known tongue twister.

Fact: humans are bad (or at least slow) at
performing repetitive tasks.

*Stefanie Shattuck-Hufnagel et al., 2013

Motivation
Fact: humans are bad (or at least slow) at
performing repetitive tasks.

Fact: computers are are good (or at least fast)
at performing repetitive tasks.

https://www.naturalreaders.com/online/

https://www.naturalreaders.com/online/
https://www.naturalreaders.com/online/

Motivation
Suppose you have a starting bank account
balance of $100.00, and your account earns
2% interest each year.

What is your balance after five years?

Motivation
Suppose you have a starting bank account
balance of $100.00, and your account earns
2% interest each year.

What is your balance each year for five years?
balance = 100.00

Motivation
Suppose you have a starting bank account
balance of $100.00, and your account earns
2% interest each year.

What is your balance each year for five years?
balance = 100.00
balance = balance + (0.02 * balance)
print(balance) # year 1

Motivation
Suppose you have a starting bank account
balance of $100.00, and your account earns
2% interest each year.

What is your balance each year for five years?
balance = 100.00
balance = balance + (0.02 * balance)
print(balance) # year 1
balance = balance + (0.02 * balance)
print(balance) # year 2

Motivation
Suppose you have a starting bank account
balance of $100.00, and your account earns
2% interest each year.

What is your balance each year for five years?
balance = 100.00
balance = balance + (0.02 * balance)
print(balance) # year 1
balance = balance + (0.02 * balance)
print(balance) # year 2
balance = balance + (0.02 * balance)
print(balance) # year 3

Motivation
Suppose you have a starting bank account
balance of $100.00, and your account earns
2% interest each year.

What is your balance each year for five years?
balance = 100.00
balance = balance + (0.02 * balance)
print(balance) # year 1
balance = balance + (0.02 * balance)
print(balance) # year 2
balance = balance + (0.02 * balance)
print(balance) # year 3
balance = balance + (0.02 * balance)
print(balance) # year 4

Motivation
Suppose you have a starting bank account
balance of $100.00, and your account earns
2% interest each year.

What is your balance each year for five years?
balance = 100.00
balance = balance + (0.02 * balance)
print(balance) # year 1
balance = balance + (0.02 * balance)
print(balance) # year 2
balance = balance + (0.02 * balance)
print(balance) # year 3
balance = balance + (0.02 * balance)
print(balance) # year 4

uh oh…

my font is

getting small

Motivation
Suppose you have a starting bank account
balance of $100.00, and your account earns
2% interest each year.

What is your balance each year for five years?
balance = 100.00
balance = balance + (0.02 * balance)
print(balance) # year 1
balance = balance + (0.02 * balance)
print(balance) # year 2
balance = balance + (0.02 * balance)
print(balance) # year 3
balance = balance + (0.02 * balance)
print(balance) # year 4
balance = balance + (0.02 * balance)
print(balance) # year 5

Motivation
Suppose you have a starting bank account
balance of $100.00, and your account earns
2% interest each year.

What is your balance each year for five years?
balance = 100.00
balance = balance + (0.02 * balance)
print(balance) # year 1
balance = balance + (0.02 * balance)
print(balance) # year 2
balance = balance + (0.02 * balance)
print(balance) # year 3
balance = balance + (0.02 * balance)
print(balance) # year 4
balance = balance + (0.02 * balance)
print(balance) # year 5 argh, ok, done.

Motivation
Suppose you have a starting bank account
balance of $100.00, and your account earns
2% interest each year.

What is your balance each year for 500 years?

An extremely common task:
do the same thing over and
over again, or do the same
processing on many pieces
of data.

Motivation
Suppose you have a starting bank account
balance of $100.00, and your account earns
2% interest each year.

What is your balance each year for 500 years?

…
An extremely common task:
do the same thing over and
over again, or do the same
processing on many pieces
of data.

Motivation
Suppose you have a starting bank account
balance of $100.00, and your account earns
2% interest each year.

What is your balance each year for 500 years?

…
An extremely common task:
do the same thing over and
over again, or do the same
processing on many pieces
of data.

Motivation
Example: Convert this 100x100 pixel image to
grayscale (“black-and-white”).

Motivation
Example: Convert this 100x100 pixel image to
grayscale (“black-and-white”).

Motivation
Example: Convert this 100x100 pixel image to
grayscale (“black-and-white”).

Motivation
Example: Convert this 100x100 pixel image to
grayscale (“black-and-white”).

Motivation
Example: Convert this 100x100 pixel image to
grayscale (“black-and-white”).

10,000 pixels, same calculation:

grey = 0.29 * red + 0.59 * green + 0.12 * blue

Python to the rescue:
the while statement

if year <= 5:
 balance = balance + (0.02 * balance)
 print(balance)

if keyword a boolean expression (the condition)

an indented code block: one
or more statements to be
executed if the boolean
expression evaluates to True

Not so different from an if statement:

a colon :

Python to the rescue:
the while statement

while year <= 5:
 balance = balance + (0.02 * balance)
 print(balance)

a boolean expression (the condition)
a colon :

an indented code block: one
or more statements to be
executed while the boolean
expression evaluates to True

Not so different from an if statement:

while keyword

The while statement:  
A Working Example

print account balance after each
of five years:
balance = 100.0 # starting balance
year = 1
while year <= 5:
 balance = balance + (0.02 * balance)
 print(balance)
 year = year + 1

The while statement:  
A Working Example

print account balance after each
of five years:
balance = 100.0 # starting balance
year = 1
while year <= 5:
 balance = balance + (0.02 * balance)
 print(balance)
 year = year + 1
Terminology notes:

The while statement:  
A Working Example

print account balance after each
of five years:
balance = 100.0 # starting balance
year = 1
while year <= 5:
 balance = balance + (0.02 * balance)
 print(balance)
 year = year + 1
Terminology notes:
• the line with while and the condition is the loop header

The while statement:  
A Working Example

print account balance after each
of five years:
balance = 100.0 # starting balance
year = 1
while year <= 5:
 balance = balance + (0.02 * balance)
 print(balance)
 year = year + 1
Terminology notes:
• the line with while and the condition is the loop header
• the code block is the loop body

The while statement:  
A Working Example

print account balance after each
of five years:
balance = 100.0 # starting balance
year = 1
while year <= 5:
 balance = balance + (0.02 * balance)
 print(balance)
 year = year + 1
Terminology notes:
• the line with while and the condition is the loop header
• the code block is the loop body
• the entire construct (header and body) is a while statement

The while statement:  
A Working Example

print account balance after each
of five years:
balance = 100.0 # starting balance
year = 1
while year <= 5:
 balance = balance + (0.02 * balance)
 print(balance)
 year = year + 1
Terminology notes:
• the line with while and the condition is the loop header
• the code block is the loop body
• the entire construct (header and body) is a while statement
• usually people call them while loops instead

demo: interest
• balance1.py: the tedious way

• balance2.py: the loopy way

The while statement:  
Semantics (Behavior)

If statement:

1. Evaluate the condition

2. If true, execute body (code
block), then continue on.

While statement:

1. Evaluate the condition

2. If true, execute body,
otherwise skip step 3 and
continue on.

3. Go back to step 1

Doubling to 100
Task: Find how how many times you have to
double the number 1 to make it larger than 100.

Doubling to 100
Task: Find how how many times you have to
double the number 1 to make it larger than 100.

times = 0
n = 1
while [condition here]:
 n = n * 2
 times = times + 1
print(times, "times!")

Doubling to 100
Task: Find how how many times you have to
double the number 1 to make it larger than 100.

times = 0
n = 1
while [condition here]:
 n = n * 2
 times = times + 1
print(times, "times!")

A. times < 100

B. times <= 100

C. n > 100

D. n <= 100

Which of the following
conditions is correct?

Aside: In-Place Operators
When writing loops (and code in general),
you’ll find yourself doing things like this often:

Python has a nice shorthand for this:

Many math operators have an in-place version:

count = count - 1
total = total + n

count -= 1
total += n

+= -= /= //= %=

Aside: In-Place Operators
When writing loops (and code in general),
you’ll find yourself doing things like this often:

Python has a nice shorthand for this:

Many math operators have an in-place version:

count = count - 1
total = total + n

count -= 1
total += n

+= -= /= //= %=

[No, Python doesn’t have increment and decrement operators ++ and --]

Demo

Demo
• double.py - change to in-place operators

• count.py:

• Counting up, counting down by an interval

• never.py:

• Condition never True

• Condition never False

• input.py:

• sum user-provided positive numbers until a negative number is entered

Other Peoples’ Code
We’ve already used code other people wrote by
calling built-in Python functions:

• print, input, type

Built-in functions are special because they’re
always available.

Many other functions exist in the Python
Standard Library, which is a collection of
modules containing many more functions.

Other Peoples’ Code
An example: I want to generate a random
integer between 0 and 10.

Other Peoples’ Code
An example: I want to generate a random
integer between 0 and 10.

I don’t know how to do this.

Other Peoples’ Code
An example: I want to generate a random
integer between 0 and 10.

import random

I don’t know how to do this.

Other Peoples’ Code
An example: I want to generate a random
integer between 0 and 10.

import random

I don’t know how to do this.
Someone who does has written some functions for me.

They live in the random module:

Other Peoples’ Code
An example: I want to generate a random
integer between 0 and 10.

import random

I don’t know how to do this.
Someone who does has written some functions for me.

They live in the random module:

I could go look at the source code…

Other Peoples’ Code
An example: I want to generate a random
integer between 0 and 10.

import random

I don’t know how to do this.
Someone who does has written some functions for me.

They live in the random module:

I could go look at the source code…

…
…

Other Peoples’ Code
An example: I want to generate a random
integer between 0 and 10.

import random

I don’t know how to do this.
Someone who does has written some functions for me.

They live in the random module:

I could go look at the source code… but I’d rather just use
their functions without knowing how they work.

num = random.randint(0,10)

Other Peoples’ Code

Two questions:

1. What is this syntax about?

2. How do I know what the function does?

import random
num = random.randint(0,10)

Using Modules: Syntax
The Python Standard Library is a collection of
modules containing many more functions.

To use functions in a module, you need to import
the module using an import statement:

By convention, we put all import statements at the
top of programs.

import module

Using Modules: Syntax
The Python Standard Library is a collection of
modules containing many more functions.

To use functions in a module, you need to import
the module using an import statement:

By convention, we put all import statements at the
top of programs.

(replace the text in this font with the specific module name)

import module

Using Modules: Syntax
Once you’ve imported a module:

you can call functions in that module using the
following syntax:

random.randint(0,10)

import random

Using Modules: Syntax
Once you’ve imported a module:

you can call functions in that module using the
following syntax:

Module name

random.randint(0,10)

import random

Using Modules: Syntax
Once you’ve imported a module:

you can call functions in that module using the
following syntax:

Module name Function call (the usual syntax)

random.randint(0,10)

import random

Using Modules: Syntax
Once you’ve imported a module:

you can call functions in that module using the
following syntax:

DotModule name Function call (the usual syntax)

random.randint(0,10)

import random

Other Peoples’ Code

Two questions:

1. What is this syntax about?

2. How do I know what the function does?

import random
num = random.randint(0,10)

Other Peoples’ Code

Two questions:

1. What is this syntax about?

2. How do I know what the function does?
Read about it in the Python documentation.

My approach, in practice:

1. Google “python 3 <whatever>”

2. Make sure the URL is from python.org and has version python 3.x

example

import random
num = random.randint(0,10)

http://python.org
https://www.google.com/search?q=python+3+random

Demo
• use of randint in a very simple guessing

game

math module
• The math module has useful stuff!

• You can read about it in the documentation.

• logarithms, trigonometry, …

• Modules can also contain values:

https://docs.python.org/3/library/math.html

More on import statements

• Import the entire module:

• Import a specific function:

• Don’t need module name dot notation

• Other math functions are not accessible

import random
num = random.randint(1, 10)

from math import sin
sin0 = sin(0)

You try it
Exercise: write a program that generates
and prints random integers between 1 and
10 (inclusive) until one of the random
numbers exceeds 8.

Documentation says:

random.randint(a, b)
Return a random integer N such that a <= N <= b

