CSCI 141

Lecture 7:
onditionals:
1f, else, elif

Announcements

Announcements

A2 is out, due next Tuesday night. Get started
early!

Announcements

A2 is out, due next Tuesday night. Get started
early!

e QOTD: late submissions are not accepted.

Announcements

A2 is out, due next Tuesday night. Get started
early!

e QOTD: late submissions are not accepted.

* Not even at 1:07pm, after |'ve gone over the answers.

Announcements

A2 is out, due next Tuesday night. Get started
early!

e QOTD: late submissions are not accepted.
* Not even at 1:07pm, after |'ve gone over the answers.

 The decimal-to-binary conversion question had
an error in the solution. | regraded them all.

Announcements

A2 is out, due next Tuesday night. Get started
early!

e QOTD: late submissions are not accepted.

* Not even at 1:07pm, after |'ve gone over the answers.

 The decimal-to-binary conversion question had
an error in the solution. | regraded them all.

* Points should be correct, but answers marked "incorrect”
may not be incorrect, and vice versa.

Goals

Understand the behavior of the equality comparison
operators (==, !=) on non-numeric types.

Know how to use an if statement to conditionally
execute a block of code.

Know how to use an if/else statement to choose
which of two code blocks to execute.

Understand how conditional statements can be nested
to make decisions among more than two possibilities.

Know how touse if/elif/else statements.

Last Time

e New type: bool

* New operators:
* comparison <, >, <=, >=, ==, | =

* |logical not, and, or

e Operator precedence

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Write the truth table:

X XOr y

Y
T F

Note: xor is not a python operator.

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

not (a and b) and not(not a and not b)
a and b or not (a or b)
a or b

(a or b) and not (a and b)

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

not (a and b) and not(not a and not b)

b
T F

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

not (a and b) and not(not a and not b)

b
T F

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

not (T and T) and not(not T and not T)

b
T F

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

not (T and T) and not(not T and not T)

b
T F

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

not T and not(not T and not T)

b
T F

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

not T and not(not T and not T)

b
T F

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

not T and not(F and F)

b
T F

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

not T and not(F and F)

b
T F

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

not T and not F

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

not T and not F

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

F and not F

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

F and not F

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

F and T

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

F and T

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

F

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

F

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

not (T and F) and not(not T and not F)

b
T F

T F

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

not (T and F) and not(not T and not F)

b
T F

T F

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

not F and not (F and T)

b
T F

T F

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

not F and not (F and T)

b
T F

T F

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

not F and not F

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

not F and not F

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

T and T

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

T and T

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

T

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

T

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

not (F and T) and not(not F and not T)

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

not (F and T) and not(not F and not T)

... F/T comes out the same as T/F

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

not (F and T) and not(not F and not T)

... F/T comes out the same as T/F

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

not (F and F) and not(not F and not F)

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

not (F and F) and not(not F and not F)

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

not (F and F) and not(not F and not F)

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

not F and not (T and T)

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

not F and not (T and T)

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

not F and not T

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

not F and not T

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

T and F

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

T and F

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

F

QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

F

QOTD

For each expression, give the type and value.

True and False or True
2**%3 .0

not 1 +5 // 2 ==3 and 4 < 5 or 4 !=5

Boolean Expressions:

Another worked example
What does this print?

print((3 == 5 or (3 != 5 and 5 != 7)) and 3 < 5)

Boolean Expressions:

Another worked example
What does this print?

print((3 == 5 or (3 != 5 and 5 != 7)) and 3 < 5)

Worked solution is on the following slides for your reference.

Last Time:
Boolean Expressions

Another example: what does this print?

print((3 == 5 or (3 != 5 and 5 != 7)) and 3 < 5)

Last Time:
Boolean Expressions

Another example: what does this print?

print((3 == 5 or (3 != 5 and 5 != 7)) and 3 < 5)

Last Time:
Boolean Expressions

Another example: what does this print?
print((3 == 5 or (3 != 5 and 5 != 7)) and 3 < 5)

print((3 == 5 or (True and True)) and 3 < 5)

Last Time:
Boolean Expressions

Another example: what does this print?
print((3 == 5 or (3 != 5 and 5 != 7)) and 3 < 5)

print((3 == 5 or (True and True)) and 3 < 5)

Last Time:
Boolean Expressions

Another example: what does this print?
print((3 == 5 or (3 != 5 and 5 != 7)) and 3 < 5)
print((3 == 5 or (True and True)) and 3 < 5)

print((3 == 5 or True) and 3 < 5)

Last Time:
Boolean Expressions

Another example: what does this print?
print((3 == 5 or (3 != 5 and 5 != 7)) and 3 < 5)
print((3 == 5 or (True and True)) and 3 < 5)

print((3 == 5 or True) and 3 < 5)

Last Time:
Boolean Expressions

Another example: what does this print?

print((3 == 5 or (3 != 5 and 5 != 7)) and 3
print((3 == 5 or (True and True)) and 3
print((3 == 5 or True) and 3

print((False or True) and 3

>)
>)
>)

>)

Last Time:
Boolean Expressions

Another example: what does this print?

print((3 == 5 or (3 != 5 and 5 != 7)) and 3
print((3 == 5 or (True and True)) and 3
print((3 == 5 or True) and 3

print((False or True) and 3

>)
>)
>)

>)

Last Time:

Boolean Expressions

Another example: what does this print?

print((3 == 5 or (3 != 5 and 5 != 7))
print((3 == 5 or (True and True))
print((3 == 5 or True)
print((False or True)
print (True

and

and

and

and

and

>)
>)
>)
>)

>)

Last Time:

Boolean Expressions

Another example: what does this print?

print((3 == 5 or (3 != 5 and 5 != 7))
print((3 == 5 or (True and True))
print((3 == 5 or True)
print((False or True)
print (True

and

and

and

and

and

>)
>)
>)
>)

S)

Last Time:

Boolean Expressions

Another example: what does this print?

and True))

)
)

print((3 == 5 or (3 != 5 and 5 != 7))
print((3 == 5 or (True

print((3 == 5 or True

print((False or True

print (True

print (True

and

and

and

and

and

and

3 < 5)

3 < 5)

True)

Last Time:

Boolean Expressions

Another example: what does this print?

and True))

)
)

print((3 == 5 or (3 != 5 and 5 != 7))
print((3 == 5 or (True

print((3 == 5 or True

print((False or True

print (True

print (True

and

and

and

and

and

and

3 < 5)

3 < 5)

True)

Another example: what does this print?

print((3
print((3
print((3
print ((
print (
print (

print (

Last Time:

Boolean Expressions

)
)

== 5 or (3 !=5 and 5 != 7))
== 5 or (True and True))
== 5 or True

False or True

True
True
True

and

and

and

and

and

and

3 < 5)

3 < 5)

True)

Operator Precedence,
Updated Again

Parentheses
8 Exponentiation (right-to-left) o
= S
S Unary + and — 1
0 S
@ | Multiplication and Division o
-

<

Q.
= Addition and Subtraction E:)'
e . . 2
Q Numerical comparisons <, >, <=, >=, ==, I= o
©
— -
O not

and

All are evaluated left to right
except for exponentiation.

or

You can look up all the details: https://docs.python.org/3/reference/expressions.html#operator-precedence

https://docs.python.org/3/reference/expressions.html#operator-precedence

Operator Precedence,
Updated Again

Parentheses
8 Exponentiation (right-to-left) o
= S
S Unary + and — 1
0 S
@ | Multiplication and Division o
-

<

Q.
= Addition and Subtraction E:)'
e . . 2
Q Numerical comparisons <, >, <=, >=, ==, I= o
©
— -
O not

and

All are evaluated left to right
except for exponentiation.

or

You can look up all the details: https://docs.python.org/3/reference/expressions.html#operator-precedence

https://docs.python.org/3/reference/expressions.html#operator-precedence

Operator Precedence,
Updated Again

Parentheses
8 Exponentiation (right-to-left) o
= S
S Unary + and — 1
0 S
@ | Multiplication and Division o
-

<

Q.
= Addition and Subtraction E:)'
e . . 2
Q Numerical comparisons <, >, <=, >=, ==, I= o
©
— -
O not

and

All are evaluated left to right

or except for exponentiation.

You can look up all the details: https://docs.python.org/3/reference/expressions.html#operator-precedence

https://docs.python.org/3/reference/expressions.html#operator-precedence

Operator Precedence,
Updated Again

Parentheses
) Exponentiation (right-to-left) Special case: o
g 2**-1 =0.5 a
2 Unary + and - 1
& =4
9 | Multiplication and Division o
B
<
o
= Addition and Subtraction E:)'
Q
e
O Numerical comparisons <, >, <=, >=, ==, I= =
ro) O
— -
O not
and :
All are evaluated left to right
or except for exponentiation.

You can look up all the details: https://docs.python.org/3/reference/expressions.html#operator-precedence

https://docs.python.org/3/reference/expressions.html#operator-precedence

Operator Precedence,
Updated Again

Parentheses
) Exponentiation (right-to-left) Special case: o
g 2**-1 =0.5 a
S Unary + and — Unspecial but surprising case: @
O 272 =-4 9-.
@ | Multiplication and Division o
B

<

Q.
= Addition and Subtraction E:)'
. . . 2
Q Numerical comparisons <, >, <=, >=, ==, I= o
o
ek -
O not

and :

All are evaluated left to right
or except for exponentiation.

You can look up all the details: https://docs.python.org/3/reference/expressions.html#operator-precedence

https://docs.python.org/3/reference/expressions.html#operator-precedence

Equality Comparisons

* The operators == and != check whether two
values are equal or not.

e Unlike some operators (e.qg., //), the concept
of equality has meaning for some non-

numeric types:

4 == 5

abc" == "bcd'

abc" == "abc
type(4) == type(>)

Equality Comparisons

* The operators == and != check whether two
values are equal or not.

e Unlike some operators (e.qg., //), the concept
of equality has meaning for some non-
numeric types:

4 == 5 => False
abc" == "bcd
abc’ == Tabc

type(4) == type(>)

Equality Comparisons

* The operators == and != check whether two
values are equal or not.

e Unlike some operators (e.qg., //), the concept
of equality has meaning for some non-
numeric types:

4 == 5 => False
abc" == "bcd” => False
abc’ == Tabc

type(4) == type(5)

Equality Comparisons

* The operators == and != check whether two
values are equal or not.

e Unlike some operators (e.qg., //), the concept
of equality has meaning for some non-
numeric types:

4 == 5 => False
abc" == "bcd” => False
abc" == "abc"” => True

type(4) == type(>)

Equality Comparisons

* The operators == and != check whether two
values are equal or not.

e Unlike some operators (e.qg., //), the concept
of equality has meaning for some non-
numeric types:

4 == 5 => False
abc" == "bcd” => False
abc" == "abc"” => True

type(4) == type(5) => True

Equality Comparisons

* The operators == and != check whether two
values are equal or not.

e Unlike some operators (e.qg., //), the concept
of equality has meaning for some non-
numeric types:

4 == 5 => False
abc" == "bcd” => False
abc" == "abc"” => True

type(4) == type(5) => True

5 => True

Equality Comparisons

Lightning round!

True or False?

Equality Comparisons

Lightning round!

10 == 4 + ©

True or False?

Equality Comparisons

Lightning round!

10 == 4 + ©

True or False?

Equality Comparisons

Lightning round!
10 == 4 + 6

" abc " —— " ab " + " C "

True or False?

Equality Comparisons

Lightning round!
10 == 4 + 6

" abc " —— " ab " + " C "

True or False?

Equality Comparisons

Lightning round!

10 == 4 + 6
" abc " —— " ab " + " C "
'abc’ == "abc”

True or False?

Equality Comparisons

Lightning round!

10 == 4 + 6
" abc " —— " ab " + " C "
'abc’ == "abc”

True or False?

Equality Comparisons

Lightning round!

10 == 4 + 6
abc" == "ab" + "c
'abc' == "abc" True or False?

Equality Comparisons

Lightning round!

10 == 4 + 6

abc” == "ab" + "c

abc' == "abc True or False?
Scott" == "scott

Equality Comparisons

Lightning round!

10 == 4 + 6

abc” == "ab" + "c

abc' == "abc True or False?
Scott" == "scott

Equality Comparisons

Lightning round!

10 == 4 + 6

"abc" == "ab" + "c¢"
‘abc' == "abc"

"Scott" == "scott"”
(4+3 > 5) == (1.0 > 4)

int(5.6) != int(5.1)

True or False?

Equality Comparisons

Lightning round!

10 == 4 + 6 => True
"abc" == "ab" + "c¢"
‘abc' == "abc"

"Scott" == "scott"”
(4+3 > 5) == (1.0 > 4)

int(5.6) != int(5.1)

True or False?

Equality Comparisons

Lightning round!

10 == 4 + 6 => True

"abc" == "ab" + "¢" => True

‘abc' == "abc" True or False?
"Scott" == "scott"”

(4+3 > 5) == (1.0 > 4)

int(5.6) != int(5.1)

Equality Comparisons

Lightning round!

10 == 4 + 6 => True

"abc" == "ab" + "¢" => True

‘abc’ == "abc" => True True or False?
"Scott" == "scott"”

(4+3 > 5) == (1.0 > 4)

int(5.6) != int(5.1)

Equality Comparisons

Lightning round!

10 == 4 + 6 => True

"abc" == "ab" + "c¢" => True

‘abc’ == "abc” => True True or False?
"Scott" == "scott" => False

(4+3 > 5) == (1.0 > 4)

int(5.6) != int(5.1)

Equality Comparisons

Lightning round!

10 == 4 + 6 => True

"abc" == "ab" + "c" => True

‘abc’ == "abc" => True True or False?
"Scott" == "scott" => False

(4+3 > 5) == (1.0 > 4) => False

int(5.6) != int(5.1)

Equality Comparisons

Lightning round!

10 == 4 + 6 => True

"abc" == "ab" + "c" => True

‘abc’ == "abc" => True True or False?
"Scott" == "scott" => False

(4+3 > 5) == (1.0 > 4) => False

int(5.6) != i1nt(5.1) => False

Today

e | ast week: everything
you already knew how
to do using a calculator.

Today

e | ast week: everything
you already knew how
to do using a calculator.

Today

e | ast week: everything
you already knew how
to do using a calculator.

e | ast lecture:
representing and
manipulating boolean
(true/false) expressions
and values.

Today

e | ast week: everything you already knew how to
do using a calculator.

e | ast lecture: representing and manipulating
boolean (true/false) expressions and values.

Today

e | ast week: everything you already knew how to
do using a calculator.

e | ast lecture: representing and manipulating
boolean (true/false) expressions and values.

* Today: Making decisions based on the value of
a boolean expression.

Today

e | ast week: everything you already knew how to
do using a calculator.

e | ast lecture: representing and manipulating
boolean (true/false) expressions and values.

/» about what code to execute

* Today: Making decisions based on the value of
a boolean expression.

Today

e | ast week: everything you already knew how to
do using a calculator.

e | ast lecture: representing and manipulating
boolean (true/false) expressions and values.

/» about what code to execute

* Today: Making decisions based on the value of
a boolean expression.

e Also: a new kind of statement!

Let’s talk about the weather

Let’s talk about the weather

e You wish to write a software system that
recommends what to wear/bring based on
the current weather conditions.

Let’s talk about the weather

e You wish to write a software system that
recommends what to wear/bring based on
the current weather conditions.

e In a later version, you will hook your
software up to automated weather sensors
that read temperature, wind, and
precipitation data in real time.

Let’s talk about the weather

e You wish to write a software system that
recommends what to wear/bring based on
the current weather conditions.

e In a later version, you will hook your
software up to automated weather sensors
that read temperature, wind, and
precipitation data in real time.

e For now, we’ll just ask the user.

Let’s talk about the weather

Suppose we have bool variable is raining

Here’s the logic (pseudocode):

e |fitis raining, tell the user to bring a raincoat

Here’s the Python code:

Let’s talk about the weather

Suppose we have bool variable is raining

Here’s the logic (pseudocode):

e |fitis raining, tell the user to bring a raincoat

Here’s the Python code:

if 1s raining:
print("You should wear a raincoat!")

Let’s talk about the weather

Suppose we have bool variables is raining and
1s windy

Here’s the logic (pseudocode):

e |fitis raining and windy, tell the user to bring a raincoat
* |f is raining and not windy, tell the user to bring an umbrella

Here’s the Python code:

Let’s talk about the weather

Suppose we have bool variables is raining and
1s windy

Here’s the logic (pseudocode):

e |fitis raining and windy, tell the user to bring a raincoat
* |f is raining and not windy, tell the user to bring an umbrella

Here’s the Python code:

if 1s raining and 1s windy:
print ("You should wear a raincoat!")
if 1s raining and not 1s windy:
print("You should bring an umbrella')

The 1if statement

if 1s raining:
[print("You should wear a raincoat!")

The 1if statement

if keyword

\

if 1s raining:
[print("You should wear a raincoat!")

The 1if statement

if keyword| |a boolean expression (the condition)

N

if 1s raining:
[print("You should wear a raincoat!")

The 1if statement

if keyword| |a boolean expression (the condition)

\ / -a colon:
if is_raining:“////
[print("You should wear a raincoat!")

The 1if statement

if keyword| |a boolean expression (the condition)

\ / -a colon:
if is_raining:“////
[print("You should wear a raincoat!")

an Indented code block: one
or more statements to be
executed if the boolean
expression evaluates to True

The 1if statement

if keyword| |a boolean expression (the condition)

\ / -a colon:
if is_raining:“////
[print("You should wear a raincoat!")

an indented code block: one | N°®®

or more statements to be
executed if the boolean
expression evaluates to True

The 1if statement

if keyword| |a boolean expression (the condition)

\ / -a colon:
if is_raining:“////
[print("You should wear a raincoat!")

Notes:

an indented code block: one * In Python, the indentation is required.

or more statements to be
executed if the boolean
expression evaluates to True

The 1if statement

if keyword

a boolean expression (the condition)

\

/ / a colon:
if 1s raining:

[print("You should wear a raincoat!")

' : Notes:
an indented code block: one * |n Python, the indentation is required.
or more statements to be * Indenting with tabs or spaces is acceptable.

executed if the boolean
expression evaluates to True

The 1if statement

if keyword| |a boolean expression (the condition)

\ / -a colon:
if is_raining:“////
[print(”You should wear a raincoat!")

: . Notes:
an indented code block: one * In Python, the indentation is required.
or more statements to be * Indenting with tabs or spaces is acceptable.
executed if the boolean e We’'ll use the most common convention:
: Indent 4 spaces beyond the line with the if
expression evaluates to True

The 1if statement

if keyword| |a boolean expression (the condition)

\ / -a colon:
if is_raining:“////
[print(”You should wear a raincoat!")

: . Notes:
an indented code block: one * In Python, the indentation is required.
or more statements to be * Indenting with tabs or spaces is acceptable.
executed if the boolean e We’'ll use the most common convention:
: Indent 4 spaces beyond the line with the if
expression evaluates to True * Thonny follows this convention for you

Demo

Demo

* using the is_raining example

o |f statement with a condition that evaluates
to True vs False

e statements after the indented code block

e multiple lines in the code block

What if it’s not raining?

What if we want to also print something in
case it’s not raining?

if 1s raining:
print("Wear a raincoat!”)

What if it’s not raining?

What if we want to also print something in
case it’s not raining?

if 1s raining:
print("Wear a raincoat!”)
if not is raining:
print("'Don’t wear a raincoat!”

What if it’s not raining?

What if we want to also print something in
case it’s not raining?
if 1s raining:
print ("Wear a raincoat!”)
if not is raining:
print("Don’'t wear a raincoat!")

How many times did we check the value of is raining?

What if it’s not raining?

What if we want to also print something in
case it’s not raining?

if 1s raining:
print("Wear a raincoat!”)
if not is raining:
print("'Don’'t wear a raincoat!")

How many times did we check the value of is raining?

Could we do any better?

What if it’s not raining?

What if we want to also print something in
case it’s not raining?

if 1s raining:
print("Wear a raincoat!”)
if not is raining:
print("'Don’'t wear a raincoat!")

How many times did we check the value of is raining?
Could we do any better?

Yes: it's a common use case to want to choose between two
paths of execution (two code blocks).

The if/else Statement

if isRailining:
print ("Wear a raincoat!”)
else:
print("'Don’'t wear a raincoat!")

The if/else Statement

if keyword a boolean expression (the condition)

an indented / / a colon :
code block to isRaining:

f
be executed |f\,[prlnt(Wear a raincoat! ")

the condition
else:

evaluates to :) : "
True print(Don’'t wear a raincoat!)

The if/else Statement

if keyword| |a boolean expression (the condition)

an indented \ / a colon :
code block to if isRaining :/
be executed 'f\»[Print("Wear a raincoat!”)

the condition
else: « a colon :

evaluates to :) . 1
True print(Don’'t wear a raincoat!)

else keyword

The if/else Statement

if keyword a boolean expression (the condition)

an indented

code block to f
be executed |f\,[prlnt(Wear a raincoat |)
else: « a colon :

the condition
evaluates to
True

else keyword

/ / a colon :
1sRaining:

([prlnt(Don’'t wear a raincoat!")
an indented

code block to
be executed if
the condition

evaluates to
False

If/else: the basics

What does the following program print?

if 2 + 5 ==
print (2

else:
print ("'not equal”)

5:
+ 5)

A 2+5
B. 7
C. 2+5==

D. not equal

If/else: the basics

What does the following program print?

a = b5

if a >= 5 and a <= 5:
print(a)

else:

print ("'nope'")

A. 5

B. a>=5
C. a<=5
D. nope

If/else: the basics

What does the following program print?

a =5
if a >= 5 and a <= 5:
print(a) Is there a better way to
write the condition?
else:

print ("'nope'")

A. 5

B. a>=5
C. a<=5
D. nope

Aim for Simplicity

a = b5

i1f a >= 5 and a <= 5:
print(a)

else:

print ("nope")

a = b5

if a == 5:
print(a)

else:

print("nope")

Aim for Simplicity

a = b5 a = b5
if a >= 5 and a <= 5: if a ==

print(a) print(a)
else: else:

print ("'nope') print ('nope')

The program on the right does exactly the same thing,
but is easier to read, and therefore is preferable.

Nested Conditionals

If/else lets you choose between two options.

What if there are more than two possibilities?

Nested Conditionals

If/else lets you choose between two options.

What if there are more than two possibilities?

assume x and y are numbers
if x < y:
print("x 1s less than y")

Nested Conditionals

If/else lets you choose between two options.

What if there are more than two possibilities?

assume x and y are numbers
if x < y:
print("x 1s less than y")

else:

Nested Conditionals

If/else lets you choose between two options.

What if there are more than two possibilities?

assume x and y are numbers
if x < y:
print("x 1s less than y")

else:
if x > y:
print("x 1s greater than y")

else:
print("'x and y must be equal")

Nested Conditionals

If/else lets you choose between two options.

What if there are more than two possibilities?

assume x and y are numbers
if x < y:
print("x 1s less than y")

else:
if x > y:
print("x 1s greater than y")
else:
print("'x and y must be equal")

the inner if/else statement is the indented code block
for the else clause of the outer if/else statement.

Nested Conditionals

If/else lets you choose between two options.

What if there are more than two possibilities?

assume X and y are numbers Note: the conditions

if x < y: still have to be
boolean expressions
(i.e., they evaluate to
True or False)

print("x is less than y")

else:
if x > y:
print("'x 1s greater than y")
else:
print("'x and y must be equal")

the inner if/else statement is the indented code block
for the else clause of the outer if/else statement.

Nested Conditionals

Suppose x =4 andy = 5. How
many comparison operators
(<, >) are evaluated by the
following code?

assume x and y are numbers
if x < y:
print("x 1s less than y")

else:
if x > y:
print("x 1s greater than y")
else:
print("'x and y must be equal")

o0 W >

w0

Chained Conditionals: Demo

Task: Write a program to ask the user for their
141 section number and print out when thelir
lab section happens.

>>> %Run section times.py
Enter your CSCI 141 section number: 40372

Your lab is on Monday from 10 - 12.
>>>

Chained Conditionals: Demo

Chained Conditionals: Demo

e sections.py: with chained if/else statements
e sections_elif.py: with if/elif/else

e sections_refactored.py: refactored to set
variables then call print once

e sections_refactored.py: with feature to
check for conflicts with lab

Chained Conditionals: Syntax

elif keyword

if i1sRalining and not 1sWindy:
print("Bring an umbrella!")

an indented elif i1sRaining and 1isWindy:

code block to be | - print("Wear a raincoat!")
executeq If none else:

of the prior : " -

conditions was |:pr1nt(No rain gear needed!)
true and this elif & an indented code block to be

condition is True executed if the none of the

above conditions was true

(an else clause is optional)

