
CSCI 141
Lecture 7:

Conditionals:

 if, else, elif

Announcements

• A2 is out, due next Tuesday night. Get started
early!

Announcements

• A2 is out, due next Tuesday night. Get started
early!

• QOTD: late submissions are not accepted.

Announcements

• A2 is out, due next Tuesday night. Get started
early!

• QOTD: late submissions are not accepted.

• Not even at 1:07pm, after I've gone over the answers.

Announcements

• A2 is out, due next Tuesday night. Get started
early!

• QOTD: late submissions are not accepted.

• Not even at 1:07pm, after I've gone over the answers.

• The decimal-to-binary conversion question had
an error in the solution. I regraded them all.

Announcements

• A2 is out, due next Tuesday night. Get started
early!

• QOTD: late submissions are not accepted.

• Not even at 1:07pm, after I've gone over the answers.

• The decimal-to-binary conversion question had
an error in the solution. I regraded them all.

• Points should be correct, but answers marked "incorrect"
may not be incorrect, and vice versa.

Announcements

Goals
• Understand the behavior of the equality comparison

operators (==, !=) on non-numeric types.

• Know how to use an if statement to conditionally
execute a block of code.

• Know how to use an if/else statement to choose
which of two code blocks to execute.

• Understand how conditional statements can be nested
to make decisions among more than two possibilities.

• Know how to use if/elif/else statements.

Last Time
• New type: bool

• New operators:

• comparison <, >, <=, >=, ==, !=

• logical not, and, or

• Operator precedence

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Write the truth table:

y

x

x xor y

T F

F

T

Note: xor is not a python operator.

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

not (a and b) and not(not a and not b)

a and b or not (a or b)

a or b

(a or b) and not (a and b)

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?
not (a and b) and not(not a and not b)

b

a

T F

F

T

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?
not (a and b) and not(not a and not b)

b

a

T F

F

T

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?
not (T and T) and not(not T and not T)

b

a

T F

F

T

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?
not (T and T) and not(not T and not T)

b

a

T F

F

T

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?
not T and not(not T and not T)

b

a

T F

F

T

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?
not T and not(not T and not T)

b

a

T F

F

T

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?
not T and not(F and F)

b

a

T F

F

T

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?
not T and not(F and F)

b

a

T F

F

T

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?
not T and not F

b

a

T F

F

T

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?
not T and not F

b

a

T F

F

T

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?
F and not F

b

a

T F

F

T

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?
F and not F

b

a

T F

F

T

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?
F and T

b

a

T F

F

T

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?
F and T

b

a

T F

F

T

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?
F

b

a

T F

F

T

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?
F

b

a

T F

F

T F

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?
not (T and F) and not(not T and not F)

b

a

T F

F

T F

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?
not (T and F) and not(not T and not F)

b

a

T F

F

T F

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?
not F and not (F and T)

b

a

T F

F

T F

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?
not F and not (F and T)

b

a

T F

F

T F

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?
not F and not F

b

a

T F

F

T F

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?
not F and not F

b

a

T F

F

T F

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?
T and T

b

a

T F

F

T F

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?
T and T

b

a

T F

F

T F

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?
T

b

a

T F

F

T F

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?
T

b

a

T F

F

T F T

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

b

a

T F

F

T F T

not (F and T) and not(not F and not T)

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

b

a

T F

F

T F T

not (F and T) and not(not F and not T)

... F/T comes out the same as T/F

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

b

a

T F

F

T F T

not (F and T) and not(not F and not T)

... F/T comes out the same as T/F

T

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

b

a

T F

F

T F T

not (F and F) and not(not F and not F)

T

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

b

a

T F

F

T F T

not (F and F) and not(not F and not F)

T

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

b

a

T F

F

T F T

not (F and F) and not(not F and not F)

T

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

b

a

T F

F

T F T

not F and not (T and T)

T

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

b

a

T F

F

T F T

not F and not (T and T)

T

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

b

a

T F

F

T F T

not F and not T

T

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

b

a

T F

F

T F T

not F and not T

T

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

b

a

T F

F

T F T

T and F

T

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

b

a

T F

F

T F T

T and F

T

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

b

a

T F

F

T F T

F

T

QOTD
Exclusive or ("xor"): True if exactly one of the
operands is true. Which of the following
evaluates to a xor b?

b

a

T F

F

T F T

F

T F

QOTD
For each expression, give the type and value.

True and False or True

2**3.0

not 1 + 5 // 2 == 3 and 4 < 5 or 4 != 5

Boolean Expressions: 
Another worked example

What does this print?
print((3 == 5 or (3 != 5 and 5 != 7)) and 3 < 5)

Boolean Expressions:
Another worked example

What does this print?
print((3 == 5 or (3 != 5 and 5 != 7)) and 3 < 5)

Worked solution is on the following slides for your reference.

Last Time: 
Boolean Expressions

print((3 == 5 or (3 != 5 and 5 != 7)) and 3 < 5)

Another example: what does this print?

Last Time: 
Boolean Expressions

print((3 == 5 or (3 != 5 and 5 != 7)) and 3 < 5)

Another example: what does this print?

Last Time: 
Boolean Expressions

print((3 == 5 or (3 != 5 and 5 != 7)) and 3 < 5)

print((3 == 5 or (True and True)) and 3 < 5)

Another example: what does this print?

Last Time: 
Boolean Expressions

print((3 == 5 or (3 != 5 and 5 != 7)) and 3 < 5)

print((3 == 5 or (True and True)) and 3 < 5)

Another example: what does this print?

Last Time: 
Boolean Expressions

print((3 == 5 or (3 != 5 and 5 != 7)) and 3 < 5)

print((3 == 5 or (True and True)) and 3 < 5)

print((3 == 5 or True) and 3 < 5)

Another example: what does this print?

Last Time: 
Boolean Expressions

print((3 == 5 or (3 != 5 and 5 != 7)) and 3 < 5)

print((3 == 5 or (True and True)) and 3 < 5)

print((3 == 5 or True) and 3 < 5)

Another example: what does this print?

Last Time: 
Boolean Expressions

print((3 == 5 or (3 != 5 and 5 != 7)) and 3 < 5)

print((3 == 5 or (True and True)) and 3 < 5)

print((3 == 5 or True) and 3 < 5)

print((False or True) and 3 < 5)

Another example: what does this print?

Last Time: 
Boolean Expressions

print((3 == 5 or (3 != 5 and 5 != 7)) and 3 < 5)

print((3 == 5 or (True and True)) and 3 < 5)

print((3 == 5 or True) and 3 < 5)

print((False or True) and 3 < 5)

Another example: what does this print?

Last Time: 
Boolean Expressions

print((3 == 5 or (3 != 5 and 5 != 7)) and 3 < 5)

print((3 == 5 or (True and True)) and 3 < 5)

print((3 == 5 or True) and 3 < 5)

print((False or True) and 3 < 5)

print(True and 3 < 5)

Another example: what does this print?

Last Time: 
Boolean Expressions

print((3 == 5 or (3 != 5 and 5 != 7)) and 3 < 5)

print((3 == 5 or (True and True)) and 3 < 5)

print((3 == 5 or True) and 3 < 5)

print((False or True) and 3 < 5)

print(True and 3 < 5)

Another example: what does this print?

Last Time: 
Boolean Expressions

print((3 == 5 or (3 != 5 and 5 != 7)) and 3 < 5)

print((3 == 5 or (True and True)) and 3 < 5)

print((3 == 5 or True) and 3 < 5)

print((False or True) and 3 < 5)

print(True and 3 < 5)

print(True and True)

Another example: what does this print?

Last Time: 
Boolean Expressions

print((3 == 5 or (3 != 5 and 5 != 7)) and 3 < 5)

print((3 == 5 or (True and True)) and 3 < 5)

print((3 == 5 or True) and 3 < 5)

print((False or True) and 3 < 5)

print(True and 3 < 5)

print(True and True)

Another example: what does this print?

Last Time: 
Boolean Expressions

print((3 == 5 or (3 != 5 and 5 != 7)) and 3 < 5)

print((3 == 5 or (True and True)) and 3 < 5)

print((3 == 5 or True) and 3 < 5)

print((False or True) and 3 < 5)

print(True and 3 < 5)

print(True and True)

print(True)

Another example: what does this print?

Operator Precedence,
Updated Again

Parentheses

Exponentiation (right-to-left)

Unary + and -

Multiplication and Division

Addition and Subtraction

Numerical comparisons <, >, <=, >=, ==, !=

not

and

or

or
de

r o
f p

re
ce

de
nc

e

All are evaluated left to right
except for exponentiation.

order of evaluation

You can look up all the details: https://docs.python.org/3/reference/expressions.html#operator-precedence

}
<latexit sha1_base64="WSujBXhkxkvOzPsVW+jHSyzK0gY=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh960X664VXcOskq8nFQgR6Nf/uoNYpZGXCGT1Jiu5yboZ1SjYJJPS73U8ISyMR3yrqWKRtz42fzSKTmzyoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zuimG134mVJIiV2yxKEwlwZjM3iYDoTlDObGEMi3srYSNqKYMbTglG4K3/PIqaV1Uvcuqd1+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB5+IjWo=</latexit>

https://docs.python.org/3/reference/expressions.html#operator-precedence

Operator Precedence,
Updated Again

Parentheses

Exponentiation (right-to-left)

Unary + and -

Multiplication and Division

Addition and Subtraction

Numerical comparisons <, >, <=, >=, ==, !=

not

and

or

or
de

r o
f p

re
ce

de
nc

e

All are evaluated left to right
except for exponentiation.

order of evaluation

You can look up all the details: https://docs.python.org/3/reference/expressions.html#operator-precedence

}
<latexit sha1_base64="WSujBXhkxkvOzPsVW+jHSyzK0gY=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh960X664VXcOskq8nFQgR6Nf/uoNYpZGXCGT1Jiu5yboZ1SjYJJPS73U8ISyMR3yrqWKRtz42fzSKTmzyoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zuimG134mVJIiV2yxKEwlwZjM3iYDoTlDObGEMi3srYSNqKYMbTglG4K3/PIqaV1Uvcuqd1+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB5+IjWo=</latexit>

https://docs.python.org/3/reference/expressions.html#operator-precedence

Operator Precedence,
Updated Again

Parentheses

Exponentiation (right-to-left)

Unary + and -

Multiplication and Division

Addition and Subtraction

Numerical comparisons <, >, <=, >=, ==, !=

not

and

or

or
de

r o
f p

re
ce

de
nc

e

All are evaluated left to right
except for exponentiation.

order of evaluation

You can look up all the details: https://docs.python.org/3/reference/expressions.html#operator-precedence

}
<latexit sha1_base64="WSujBXhkxkvOzPsVW+jHSyzK0gY=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh960X664VXcOskq8nFQgR6Nf/uoNYpZGXCGT1Jiu5yboZ1SjYJJPS73U8ISyMR3yrqWKRtz42fzSKTmzyoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zuimG134mVJIiV2yxKEwlwZjM3iYDoTlDObGEMi3srYSNqKYMbTglG4K3/PIqaV1Uvcuqd1+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB5+IjWo=</latexit>

https://docs.python.org/3/reference/expressions.html#operator-precedence

Operator Precedence,
Updated Again

Parentheses

Exponentiation (right-to-left)

Unary + and -

Multiplication and Division

Addition and Subtraction

Numerical comparisons <, >, <=, >=, ==, !=

not

and

or

or
de

r o
f p

re
ce

de
nc

e

All are evaluated left to right
except for exponentiation.

order of evaluation

You can look up all the details: https://docs.python.org/3/reference/expressions.html#operator-precedence

Special case:

2**-1 = 0.5}

<latexit sha1_base64="WSujBXhkxkvOzPsVW+jHSyzK0gY=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh960X664VXcOskq8nFQgR6Nf/uoNYpZGXCGT1Jiu5yboZ1SjYJJPS73U8ISyMR3yrqWKRtz42fzSKTmzyoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zuimG134mVJIiV2yxKEwlwZjM3iYDoTlDObGEMi3srYSNqKYMbTglG4K3/PIqaV1Uvcuqd1+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB5+IjWo=</latexit>

https://docs.python.org/3/reference/expressions.html#operator-precedence

Operator Precedence,
Updated Again

Parentheses

Exponentiation (right-to-left)

Unary + and -

Multiplication and Division

Addition and Subtraction

Numerical comparisons <, >, <=, >=, ==, !=

not

and

or

or
de

r o
f p

re
ce

de
nc

e

All are evaluated left to right
except for exponentiation.

order of evaluation

You can look up all the details: https://docs.python.org/3/reference/expressions.html#operator-precedence

Special case:

2**-1 = 0.5

Unspecial but surprising case:

-2**2 = -4

}
<latexit sha1_base64="WSujBXhkxkvOzPsVW+jHSyzK0gY=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh960X664VXcOskq8nFQgR6Nf/uoNYpZGXCGT1Jiu5yboZ1SjYJJPS73U8ISyMR3yrqWKRtz42fzSKTmzyoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zuimG134mVJIiV2yxKEwlwZjM3iYDoTlDObGEMi3srYSNqKYMbTglG4K3/PIqaV1Uvcuqd1+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB5+IjWo=</latexit>

https://docs.python.org/3/reference/expressions.html#operator-precedence

• The operators == and != check whether two
values are equal or not.

• Unlike some operators (e.g., //), the concept
of equality has meaning for some non-
numeric types:

4 == 5
"abc" == "bcd"
"abc" == "abc"
type(4) == type(5)
5.0 == 5

Equality Comparisons

• The operators == and != check whether two
values are equal or not.

• Unlike some operators (e.g., //), the concept
of equality has meaning for some non-
numeric types:

4 == 5
"abc" == "bcd"
"abc" == "abc"
type(4) == type(5)
5.0 == 5

=> False

Equality Comparisons

• The operators == and != check whether two
values are equal or not.

• Unlike some operators (e.g., //), the concept
of equality has meaning for some non-
numeric types:

4 == 5
"abc" == "bcd"
"abc" == "abc"
type(4) == type(5)
5.0 == 5

=> False
=> False

Equality Comparisons

• The operators == and != check whether two
values are equal or not.

• Unlike some operators (e.g., //), the concept
of equality has meaning for some non-
numeric types:

4 == 5
"abc" == "bcd"
"abc" == "abc"
type(4) == type(5)
5.0 == 5

=> False
=> False
=> True

Equality Comparisons

• The operators == and != check whether two
values are equal or not.

• Unlike some operators (e.g., //), the concept
of equality has meaning for some non-
numeric types:

4 == 5
"abc" == "bcd"
"abc" == "abc"
type(4) == type(5)
5.0 == 5

=> False
=> False
=> True
=> True

Equality Comparisons

• The operators == and != check whether two
values are equal or not.

• Unlike some operators (e.g., //), the concept
of equality has meaning for some non-
numeric types:

4 == 5
"abc" == "bcd"
"abc" == "abc"
type(4) == type(5)
5.0 == 5

=> False
=> False
=> True
=> True
=> True

Equality Comparisons

Equality Comparisons
Lightning round!

True or False?

Equality Comparisons
Lightning round!

10 == 4 + 6

True or False?

Equality Comparisons
Lightning round!

10 == 4 + 6

True or False?

Equality Comparisons
Lightning round!

10 == 4 + 6

"abc" == "ab" + "c"

True or False?

Equality Comparisons
Lightning round!

10 == 4 + 6

"abc" == "ab" + "c"

True or False?

Equality Comparisons
Lightning round!

10 == 4 + 6

"abc" == "ab" + "c"

'abc' == "abc" True or False?

Equality Comparisons
Lightning round!

10 == 4 + 6

"abc" == "ab" + "c"

'abc' == "abc" True or False?

Equality Comparisons
Lightning round!

10 == 4 + 6

"abc" == "ab" + "c"

'abc' == "abc"

"Scott" == "scott"  

True or False?

Equality Comparisons
Lightning round!

10 == 4 + 6

"abc" == "ab" + "c"

'abc' == "abc"

"Scott" == "scott"  

(4+3 > 5) == (1.0 > 4)

True or False?

Equality Comparisons
Lightning round!

10 == 4 + 6

"abc" == "ab" + "c"

'abc' == "abc"

"Scott" == "scott"  

(4+3 > 5) == (1.0 > 4)

True or False?

Equality Comparisons
Lightning round!

10 == 4 + 6

"abc" == "ab" + "c"

'abc' == "abc"

"Scott" == "scott"  

(4+3 > 5) == (1.0 > 4)

int(5.6) != int(5.1)

True or False?

Equality Comparisons
Lightning round!

10 == 4 + 6

"abc" == "ab" + "c"

'abc' == "abc"

"Scott" == "scott"  

(4+3 > 5) == (1.0 > 4)

int(5.6) != int(5.1)

=> True

True or False?

Equality Comparisons
Lightning round!

10 == 4 + 6

"abc" == "ab" + "c"

'abc' == "abc"

"Scott" == "scott"  

(4+3 > 5) == (1.0 > 4)

int(5.6) != int(5.1)

=> True

=> True

True or False?

Equality Comparisons
Lightning round!

10 == 4 + 6

"abc" == "ab" + "c"

'abc' == "abc"

"Scott" == "scott"  

(4+3 > 5) == (1.0 > 4)

int(5.6) != int(5.1)

=> True

=> True

=> True True or False?

Equality Comparisons
Lightning round!

10 == 4 + 6

"abc" == "ab" + "c"

'abc' == "abc"

"Scott" == "scott"  

(4+3 > 5) == (1.0 > 4)

int(5.6) != int(5.1)

=> True

=> True

=> True

=> False

True or False?

Equality Comparisons
Lightning round!

10 == 4 + 6

"abc" == "ab" + "c"

'abc' == "abc"

"Scott" == "scott"  

(4+3 > 5) == (1.0 > 4)

int(5.6) != int(5.1)

=> True

=> True

=> True

=> False

=> False

True or False?

Equality Comparisons
Lightning round!

10 == 4 + 6

"abc" == "ab" + "c"

'abc' == "abc"

"Scott" == "scott"  

(4+3 > 5) == (1.0 > 4)

int(5.6) != int(5.1)

=> True

=> True

=> True

=> False

=> False

=> False

True or False?

Today

Today
• Last week: everything

you already knew how
to do using a calculator.

Today
• Last week: everything

you already knew how
to do using a calculator.

Today
• Last week: everything

you already knew how
to do using a calculator.

• Last lecture:
representing and
manipulating boolean
(true/false) expressions
and values.

Today

Today
• Last week: everything you already knew how to

do using a calculator.

• Last lecture: representing and manipulating
boolean (true/false) expressions and values. 

Today
• Last week: everything you already knew how to

do using a calculator.

• Last lecture: representing and manipulating
boolean (true/false) expressions and values. 

• Today: Making decisions based on the value of
a boolean expression.

Today
• Last week: everything you already knew how to

do using a calculator.

• Last lecture: representing and manipulating
boolean (true/false) expressions and values. 

• Today: Making decisions based on the value of
a boolean expression.

about what code to execute

Today
• Last week: everything you already knew how to

do using a calculator.

• Last lecture: representing and manipulating
boolean (true/false) expressions and values. 

• Today: Making decisions based on the value of
a boolean expression.

• Also: a new kind of statement!

about what code to execute

Let’s talk about the weather

Let’s talk about the weather

• You wish to write a software system that
recommends what to wear/bring based on
the current weather conditions.

Let’s talk about the weather

• You wish to write a software system that
recommends what to wear/bring based on
the current weather conditions.

• In a later version, you will hook your
software up to automated weather sensors
that read temperature, wind, and
precipitation data in real time.

Let’s talk about the weather

• You wish to write a software system that
recommends what to wear/bring based on
the current weather conditions.

• In a later version, you will hook your
software up to automated weather sensors
that read temperature, wind, and
precipitation data in real time.

• For now, we’ll just ask the user.

Let’s talk about the weather
Suppose we have bool variable is_raining

Here’s the logic (pseudocode):

• if it is raining, tell the user to bring a raincoat

Here’s the Python code:

Let’s talk about the weather
Suppose we have bool variable is_raining

Here’s the logic (pseudocode):

• if it is raining, tell the user to bring a raincoat

Here’s the Python code:

if is_raining:
 print("You should wear a raincoat!")

Let’s talk about the weather
Suppose we have bool variables is_raining and
is_windy

Here’s the logic (pseudocode):

• if it is raining and windy, tell the user to bring a raincoat

• if is raining and not windy, tell the user to bring an umbrella

Here’s the Python code:

Let’s talk about the weather
Suppose we have bool variables is_raining and
is_windy

Here’s the logic (pseudocode):

• if it is raining and windy, tell the user to bring a raincoat

• if is raining and not windy, tell the user to bring an umbrella

Here’s the Python code:
if is_raining and is_windy:
 print("You should wear a raincoat!")
if is_raining and not is_windy:
 print("You should bring an umbrella")

The if statement

if is_raining:
 print("You should wear a raincoat!")

The if statement

if is_raining:
 print("You should wear a raincoat!")

if keyword

The if statement

if is_raining:
 print("You should wear a raincoat!")

if keyword a boolean expression (the condition)

The if statement

if is_raining:
 print("You should wear a raincoat!")

if keyword a boolean expression (the condition)
a colon :

The if statement

if is_raining:
 print("You should wear a raincoat!")

if keyword a boolean expression (the condition)
a colon :

an indented code block: one
or more statements to be
executed if the boolean
expression evaluates to True

The if statement

if is_raining:
 print("You should wear a raincoat!")

Notes:

if keyword a boolean expression (the condition)
a colon :

an indented code block: one
or more statements to be
executed if the boolean
expression evaluates to True

The if statement

if is_raining:
 print("You should wear a raincoat!")

Notes:
• In Python, the indentation is required.

if keyword a boolean expression (the condition)
a colon :

an indented code block: one
or more statements to be
executed if the boolean
expression evaluates to True

The if statement

if is_raining:
 print("You should wear a raincoat!")

Notes:
• In Python, the indentation is required.
• Indenting with tabs or spaces is acceptable.

if keyword a boolean expression (the condition)
a colon :

an indented code block: one
or more statements to be
executed if the boolean
expression evaluates to True

The if statement

if is_raining:
 print("You should wear a raincoat!")

Notes:
• In Python, the indentation is required.
• Indenting with tabs or spaces is acceptable.
• We’ll use the most common convention:

indent 4 spaces beyond the line with the if

if keyword a boolean expression (the condition)
a colon :

an indented code block: one
or more statements to be
executed if the boolean
expression evaluates to True

The if statement

if is_raining:
 print("You should wear a raincoat!")

Notes:
• In Python, the indentation is required.
• Indenting with tabs or spaces is acceptable.
• We’ll use the most common convention:

indent 4 spaces beyond the line with the if
• Thonny follows this convention for you

if keyword a boolean expression (the condition)
a colon :

an indented code block: one
or more statements to be
executed if the boolean
expression evaluates to True

Demo

Demo
• using the is_raining example

• if statement with a condition that evaluates
to True vs False

• statements after the indented code block

• multiple lines in the code block

What if it’s not raining?
What if we want to also print something in
case it’s not raining?

if is_raining:
 print("Wear a raincoat!”)

What if it’s not raining?
What if we want to also print something in
case it’s not raining?

if is_raining:
 print("Wear a raincoat!”)
if not is_raining:
 print("Don’t wear a raincoat!")

What if it’s not raining?
What if we want to also print something in
case it’s not raining?

How many times did we check the value of is_raining?

if is_raining:
 print("Wear a raincoat!”)
if not is_raining:
 print("Don’t wear a raincoat!")

What if it’s not raining?
What if we want to also print something in
case it’s not raining?

How many times did we check the value of is_raining?

Could we do any better?

if is_raining:
 print("Wear a raincoat!”)
if not is_raining:
 print("Don’t wear a raincoat!")

What if it’s not raining?
What if we want to also print something in
case it’s not raining?

How many times did we check the value of is_raining?

Could we do any better?

Yes: it’s a common use case to want to choose between two
paths of execution (two code blocks).

if is_raining:
 print("Wear a raincoat!”)
if not is_raining:
 print("Don’t wear a raincoat!")

if isRaining:
 print("Wear a raincoat!”)
else:
 print("Don’t wear a raincoat!")

The if/else Statement

if isRaining:
 print("Wear a raincoat!”)
else:
 print("Don’t wear a raincoat!")

The if/else Statement

an indented
code block to
be executed if
the condition
evaluates to
True

if keyword a boolean expression (the condition)
a colon :

if isRaining:
 print("Wear a raincoat!”)
else:
 print("Don’t wear a raincoat!")

The if/else Statement

an indented
code block to
be executed if
the condition
evaluates to
True

if keyword a boolean expression (the condition)
a colon :

else keyword

a colon :

if isRaining:
 print("Wear a raincoat!”)
else:
 print("Don’t wear a raincoat!")

The if/else Statement

an indented
code block to
be executed if
the condition
evaluates to
True

an indented
code block to
be executed if
the condition
evaluates to
False

if keyword a boolean expression (the condition)
a colon :

else keyword

a colon :

if/else: the basics
What does the following program print?

if 2 + 5 == 5:
 print(2 + 5)
else:
 print("not equal")

A. 2 + 5

B. 7

C. 2 + 5 == 5

D. not equal

!
if/else: the basics

What does the following program print?

A. 5

B. a >= 5

C. a <= 5

D. nope

a = 5
if a >= 5 and a <= 5:
 print(a)
else:
 print("nope")

!
if/else: the basics

What does the following program print?

A. 5

B. a >= 5

C. a <= 5

D. nope

a = 5
if a >= 5 and a <= 5:
 print(a)
else:
 print("nope")

Is there a better way to
write the condition?

Aim for Simplicity

a = 5
if a >= 5 and a <= 5:
 print(a)
else:
 print("nope")

a = 5
if a == 5:
 print(a)
else:
 print("nope")

Aim for Simplicity

a = 5
if a >= 5 and a <= 5:
 print(a)
else:
 print("nope")

a = 5
if a == 5:
 print(a)
else:
 print("nope")

The program on the right does exactly the same thing,
but is easier to read, and therefore is preferable.

Nested Conditionals
If/else lets you choose between two options.

What if there are more than two possibilities?

Nested Conditionals

assume x and y are numbers
if x < y:
 print("x is less than y")

If/else lets you choose between two options.

What if there are more than two possibilities?

Nested Conditionals

assume x and y are numbers
if x < y:
 print("x is less than y")

If/else lets you choose between two options.

What if there are more than two possibilities?

else:

Nested Conditionals

assume x and y are numbers
if x < y:
 print("x is less than y")

If/else lets you choose between two options.

What if there are more than two possibilities?

else:
 if x > y:

 print("x is greater than y")
else:
 print("x and y must be equal")

Nested Conditionals

assume x and y are numbers
if x < y:
 print("x is less than y")

If/else lets you choose between two options.

What if there are more than two possibilities?

else:
 if x > y:

 print("x is greater than y")
else:
 print("x and y must be equal")
the inner if/else statement is the indented code block
for the else clause of the outer if/else statement.

Nested Conditionals

assume x and y are numbers
if x < y:
 print("x is less than y")

If/else lets you choose between two options.

What if there are more than two possibilities?

else:
 if x > y:

 print("x is greater than y")
else:
 print("x and y must be equal")
the inner if/else statement is the indented code block
for the else clause of the outer if/else statement.

Note: the conditions
still have to be
boolean expressions
(i.e., they evaluate to
True or False)

Nested Conditionals

assume x and y are numbers
if x < y:
 print("x is less than y")

Suppose x = 4 and y = 5. How
many comparison operators
(<, >) are evaluated by the
following code?

else:
 if x > y:

 print("x is greater than y")
else:
 print("x and y must be equal")

A. 0

B. 1

C. 2

D. 3

Chained Conditionals: Demo
Task: Write a program to ask the user for their
141 section number and print out when their
lab section happens.

>>> %Run section_times.py
 Enter your CSCI 141 section number: 40372
 Your lab is on Monday from 10 - 12.
>>>

Chained Conditionals: Demo

Chained Conditionals: Demo

• sections.py: with chained if/else statements

• sections_elif.py: with if/elif/else

• sections_refactored.py: refactored to set
variables then call print once

• sections_refactored.py: with feature to
check for conflicts with lab

if isRaining and not isWindy:
 print("Bring an umbrella!")
elif isRaining and isWindy:
 print("Wear a raincoat!")
else:
 print("No rain gear needed!)

an indented code block to be
executed if the none of the
above conditions was true

Chained Conditionals: Syntax

elif keyword

an indented
code block to be
executed if none
of the prior
conditions was
true and this elif
condition is True

(an else clause is optional)

