CSCI 141

Lecture 7:
onditionals:
1f, else, elif
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Announcements

A2 is out, due next Tuesday night. Get started
early!

e QOTD: late submissions are not accepted.

* Not even at 1:07pm, after |'ve gone over the answers.

 The decimal-to-binary conversion question had
an error in the solution. | regraded them all.

* Points should be correct, but answers marked "incorrect”
may not be incorrect, and vice versa.



Goals

Understand the behavior of the equality comparison
operators (==, !=) on non-numeric types.

Know how to use an if statement to conditionally
execute a block of code.

Know how to use an if/else statement to choose
which of two code blocks to execute.

Understand how conditional statements can be nested
to make decisions among more than two possibilities.

Know how touse if/elif/else statements.



Last Time

e New type: bool

* New operators:
* comparison <, >, <=, >=, ==, | =

* |logical not, and, or

e Operator precedence



QOTD

Exclusive or ("xor"): True if exactly one of the
operands is true. Write the truth table:

X XOr y

Y
T F

Note: xor is not a python operator.
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a or b
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QOTD

For each expression, give the type and value.

True and False or True
2**%3 .0

not 1 +5 // 2 ==3 and 4 < 5 or 4 !=5
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Worked solution is on the following slides for your reference.
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Another example: what does this print?

print((3 == 5 or (3 != 5 and 5 != 7)) and 3
print((3 == 5 or ( True and True )) and 3
print((3 == 5 or True ) and 3

print(( False or True ) and 3
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Another example: what does this print?

and True ))

)
)

print((3 == 5 or (3 != 5 and 5 != 7))
print((3 == 5 or ( True

print((3 == 5 or True

print(( False or True

print ( True
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Last Time:

Boolean Expressions

)
)

== 5 or (3 !=5 and 5 != 7))
== 5 or ( True and True ))
== 5 or True

False or True

True
True
True

and

and

and

and

and

and

3 < 5)

3 < 5)

True)



Operator Precedence,
Updated Again

Parentheses
8 Exponentiation (right-to-left) o
= S
S Unary + and — 1
0 S
@ | Multiplication and Division o
-

<

Q.
= Addition and Subtraction E:)'
e . . 2
Q Numerical comparisons <, >, <=, >=, ==, I= o
©
— -
O not

and

All are evaluated left to right
except for exponentiation.

or

You can look up all the details: https://docs.python.org/3/reference/expressions.html#operator-precedence
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of equality has meaning for some non-
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type(4) == type(>)
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10 == 4 + 6 => True

"abc" == "ab" + "c" => True

‘abc’ == "abc" => True True or False?
"Scott" == "scott" => False

(4+3 > 5) == (1.0 > 4) => False

int(5.6) != i1nt(5.1) => False
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Today

e | ast week: everything you already knew how to
do using a calculator.

e | ast lecture: representing and manipulating
boolean (true/false) expressions and values.

/» about what code to execute

* Today: Making decisions based on the value of
a boolean expression.

e Also: a new kind of statement!
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Let’s talk about the weather

e You wish to write a software system that
recommends what to wear/bring based on
the current weather conditions.

e In a later version, you will hook your
software up to automated weather sensors
that read temperature, wind, and
precipitation data in real time.

e For now, we’ll just ask the user.
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Let’s talk about the weather

Suppose we have bool variables is raining and
1s windy

Here’s the logic (pseudocode):

e |fitis raining and windy, tell the user to bring a raincoat
* |f is raining and not windy, tell the user to bring an umbrella

Here’s the Python code:

if 1s raining and 1s windy:
print ("You should wear a raincoat!")
if 1s raining and not 1s windy:
print("You should bring an umbrella')
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: . Notes:
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The 1if statement

if keyword| |a boolean expression (the condition)

\ / -a colon:
if is_raining:“////
[print(”You should wear a raincoat!")

: . Notes:
an indented code block: one * In Python, the indentation is required.
or more statements to be * Indenting with tabs or spaces is acceptable.
executed if the boolean e We’'ll use the most common convention:
: Indent 4 spaces beyond the line with the if
expression evaluates to True * Thonny follows this convention for you
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Demo

* using the is_raining example

o |f statement with a condition that evaluates
to True vs False

e statements after the indented code block

e multiple lines in the code block



What if it’s not raining?

What if we want to also print something in
case it’s not raining?

if 1s raining:
print( "Wear a raincoat!”)



What if it’s not raining?

What if we want to also print something in
case it’s not raining?

if 1s raining:
print( "Wear a raincoat!”)
if not is raining:
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How many times did we check the value of is raining?
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case it’s not raining?
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What if it’s not raining?

What if we want to also print something in
case it’s not raining?

if 1s raining:
print( "Wear a raincoat!”)
if not is raining:
print("'Don’'t wear a raincoat!")

How many times did we check the value of is raining?
Could we do any better?

Yes: it's a common use case to want to choose between two
paths of execution (two code blocks).



The if/else Statement

if isRailining:
print ( "Wear a raincoat!”)
else:
print("'Don’'t wear a raincoat!")



The if/else Statement

if keyword a boolean expression (the condition)

an indented / / a colon :
code block to isRaining:

f
be executed |f\,[prlnt( Wear a raincoat! " )

the condition
else:

evaluates to : ) : "
True print( Don’'t wear a raincoat! )




The if/else Statement

if keyword| |a boolean expression (the condition)

an indented \ / a colon :
code block to if isRaining :/
be executed 'f\»[Print( "Wear a raincoat!”)

the condition
else: « a colon :

evaluates to : ) . 1
True print( Don’'t wear a raincoat! )

else keyword




The if/else Statement

if keyword a boolean expression (the condition)

an indented

code block to f
be executed |f\,[prlnt( Wear a raincoat | )
else: « a colon :

the condition
evaluates to
True

else keyword

/ / a colon :
1sRaining:

([prlnt( Don’'t wear a raincoat!")
an indented

code block to
be executed if
the condition

evaluates to
False




If/else: the basics

What does the following program print?

if 2 + 5 ==
print (2

else:
print ( "'not equal”)

5:
+ 5)

A 2+5
B. 7
C. 2+5==

D. not equal



If/else: the basics

What does the following program print?

a = b5

if a >= 5 and a <= 5:
print(a)

else:

print ( "'nope'")

A. 5

B. a>=5
C. a<=5
D. nope



If/else: the basics

What does the following program print?

a =5
if a >= 5 and a <= 5:
print(a) Is there a better way to
write the condition?
else:

print ( "'nope'")

A. 5

B. a>=5
C. a<=5
D. nope



Aim for Simplicity

a = b5

i1f a >= 5 and a <= 5:
print(a)

else:

print ( "nope")

a = b5

if a == 5:
print(a)

else:

print( "nope")



Aim for Simplicity

a = b5 a = b5
if a >= 5 and a <= 5: if a ==

print(a) print(a)
else: else:

print ( "'nope') print ( 'nope')

The program on the right does exactly the same thing,
but is easier to read, and therefore is preferable.



Nested Conditionals

If/else lets you choose between two options.

What if there are more than two possibilities?
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What if there are more than two possibilities?

# assume x and y are numbers
if x < y:
print("x 1s less than y")
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Nested Conditionals

If/else lets you choose between two options.

What if there are more than two possibilities?

# assume x and y are numbers
if x < y:
print("x 1s less than y")

else:
if x > y:
print("x 1s greater than y")
else:
print("'x and y must be equal")

the inner if/else statement is the indented code block
for the else clause of the outer if/else statement.



Nested Conditionals

If/else lets you choose between two options.

What if there are more than two possibilities?

# assume X and y are numbers Note: the conditions

if x < y: still have to be
boolean expressions
(i.e., they evaluate to
True or False)

print("x is less than y")

else:
if x > y:
print("'x 1s greater than y")
else:
print("'x and y must be equal")

the inner if/else statement is the indented code block
for the else clause of the outer if/else statement.



Nested Conditionals

Suppose x =4 andy = 5. How
many comparison operators
(<, >) are evaluated by the
following code?

# assume x and y are numbers
if x < y:
print("x 1s less than y")

else:
if x > y:
print("x 1s greater than y")
else:
print("'x and y must be equal")

o0 W >

w0



Chained Conditionals: Demo

Task: Write a program to ask the user for their
141 section number and print out when thelir
lab section happens.

>>> %Run section times.py
Enter your CSCI 141 section number: 40372

Your lab is on Monday from 10 - 12.
>>>



Chained Conditionals: Demo



Chained Conditionals: Demo

e sections.py: with chained if/else statements
e sections_elif.py: with if/elif/else

e sections_refactored.py: refactored to set
variables then call print once

e sections_refactored.py: with feature to
check for conflicts with lab



Chained Conditionals: Syntax

elif keyword

if i1sRalining and not 1sWindy:
print("Bring an umbrella!")

an indented elif i1sRaining and 1isWindy:

code block to be | - print("Wear a raincoat!")
executeq If none else:

of the prior : " -

conditions was |:pr1nt( No rain gear needed!)
true and this elif & an indented code block to be

condition is True executed if the none of the

above conditions was true

(an else clause is optional)



