
CSCI 141
Lecture 6:

The bool data type

Boolean Expressions

Boolean Operators

Announcements

• A1 is due tonight!

Announcements

• A1 is due tonight!

• Please name your files as described. There are 200 of you.

Announcements

• A1 is due tonight!

• Please name your files as described. There are 200 of you.

• arithmatic.py will break our scripts and require manual handling

Announcements

• A1 is due tonight!

• Please name your files as described. There are 200 of you.

• arithmatic.py will break our scripts and require manual handling

• arithmetic-2.py will not break our scripts - you can resubmit and the latest
version will be graded.

Announcements

• A1 is due tonight!

• Please name your files as described. There are 200 of you.

• arithmatic.py will break our scripts and require manual handling

• arithmetic-2.py will not break our scripts - you can resubmit and the latest
version will be graded.

• Canvas Submission comments: I don't read them. Your TA may
not either.

Announcements

• A1 is due tonight!

• Please name your files as described. There are 200 of you.

• arithmatic.py will break our scripts and require manual handling

• arithmetic-2.py will not break our scripts - you can resubmit and the latest
version will be graded.

• Canvas Submission comments: I don't read them. Your TA may
not either.

• If you need to communicate something to me or your TA, send it by email or
Canvas message.

Announcements

• A1 is due tonight!

• Please name your files as described. There are 200 of you.

• arithmatic.py will break our scripts and require manual handling

• arithmetic-2.py will not break our scripts - you can resubmit and the latest
version will be graded.

• Canvas Submission comments: I don't read them. Your TA may
not either.

• If you need to communicate something to me or your TA, send it by email or
Canvas message.

• A2 will be out tomorrow. Due next Monday night.

Announcements

Goals
• Understand the use and values of the type
bool and the meaning of a boolean
expression.

• Understand the behavior of the arithmetic
comparison operators (<, >, <=, >=, ==,
!=).

• Understand the behavior of the boolean
logical operators and, or, and not

QOTD
What does the following program print? Be
sure to write the result exactly as Python
would print it out.

a = 31
b = a // 4
c = (5 % b) - 1.0
print(a, b, c, sep="", end="!")

QOTD
The table lists the first few
powers of two, their values,
and the binary digits in the
representation of the decimal
number 19.

• In the second column, fill in
the missing powers of two.

• In the third column, fill in the
remaining digits of the
binary representation of the
decimal number 19.

QOTD
The table lists the first few
powers of two, their values,
and the binary digits in the
representation of the decimal
number 19.

• In the second column, fill in
the missing powers of two.

• In the third column, fill in the
remaining digits of the
binary representation of the
decimal number 19.

16

QOTD
The table lists the first few
powers of two, their values,
and the binary digits in the
representation of the decimal
number 19.

• In the second column, fill in
the missing powers of two.

• In the third column, fill in the
remaining digits of the
binary representation of the
decimal number 19.

16

32

QOTD
The table lists the first few
powers of two, their values,
and the binary digits in the
representation of the decimal
number 19.

• In the second column, fill in
the missing powers of two.

• In the third column, fill in the
remaining digits of the
binary representation of the
decimal number 19.

16

32

+

*

*

*

*

*

*

=

QOTD
The table lists the first few
powers of two, their values,
and the binary digits in the
representation of the decimal
number 19.

• In the second column, fill in
the missing powers of two.

• In the third column, fill in the
remaining digits of the
binary representation of the
decimal number 19.

16

32

+

*

*

*

*

*

*

= 19

QOTD
The table lists the first few
powers of two, their values,
and the binary digits in the
representation of the decimal
number 19.

• In the second column, fill in
the missing powers of two.

• In the third column, fill in the
remaining digits of the
binary representation of the
decimal number 19.

16

32

+

*

*

*

*

*

*

= 19

(3 left)

QOTD
The table lists the first few
powers of two, their values,
and the binary digits in the
representation of the decimal
number 19.

• In the second column, fill in
the missing powers of two.

• In the third column, fill in the
remaining digits of the
binary representation of the
decimal number 19.

16

32

+

*

*

*

*

*

*

= 19

0
(3 left)

QOTD
The table lists the first few
powers of two, their values,
and the binary digits in the
representation of the decimal
number 19.

• In the second column, fill in
the missing powers of two.

• In the third column, fill in the
remaining digits of the
binary representation of the
decimal number 19.

16

32

+

*

*

*

*

*

*

= 19

0

0

(3 left)

QOTD
The table lists the first few
powers of two, their values,
and the binary digits in the
representation of the decimal
number 19.

• In the second column, fill in
the missing powers of two.

• In the third column, fill in the
remaining digits of the
binary representation of the
decimal number 19.

16

32

+

*

*

*

*

*

*

= 19

0

0

1

(3 left)

QOTD
The table lists the first few
powers of two, their values,
and the binary digits in the
representation of the decimal
number 19.

• In the second column, fill in
the missing powers of two.

• In the third column, fill in the
remaining digits of the
binary representation of the
decimal number 19.

16

32

+

*

*

*

*

*

*

= 19

0

0

1

1

(3 left)

QOTD
The table lists the first few
powers of two, their values,
and the binary digits in the
representation of the decimal
number 19.

• In the second column, fill in
the missing powers of two.

• In the third column, fill in the
remaining digits of the
binary representation of the
decimal number 19.

16

32

+

*

*

*

*

*

*

= 19

0

0

1

1

(3 left)

(1 left)

QOTD
The table lists the first few
powers of two, their values,
and the binary digits in the
representation of the decimal
number 19.

• In the second column, fill in
the missing powers of two.

• In the third column, fill in the
remaining digits of the
binary representation of the
decimal number 19.

16

32

+

*

*

*

*

*

*

= 19

0

0

1

1

(3 left)

(1 left)

(0 left)

QOTD

The third column of
the following table
contains the binary
representation for
what decimal
number?

QOTD

The third column of
the following table
contains the binary
representation for
what decimal
number?

*

*

*

*

=

+

QOTD

The third column of
the following table
contains the binary
representation for
what decimal
number?

*

*

*

*

=

+

10

QOTD
• Suppose the variable a contains a positive

integer. Write a single call to the print function
that produces the binary representation of 2a - 1.
For example, if a is 3, the program should print
the binary representation of 23 - 1 = 7. You may
print the binary representation without any
leading zeros.

• Hint: the binary representation of 2a - 1 has a
special property - try out a few examples of a to
get a feel for it.

Last time...

Last time...
• str + str performs string concatenation

Last time...
• str + str performs string concatenation

"Bat" + "man" => "Batman"

Last time...
• str + str performs string concatenation

• str * int performs string repetition: 
 

"Bat" + "man" => "Batman"

Last time...
• str + str performs string concatenation

• str * int performs string repetition: 
 

"Bat" + "man" => "Batman"

" toy boat " * 5

Last time...
• str + str performs string concatenation

• str * int performs string repetition: 
 

"Bat" + "man" => "Batman"

" toy boat " * 5
 => "toy boat toy boat toy boat toy boat toy boat"

Last time...
• str + str performs string concatenation

• str * int performs string repetition: 
 

• Operator precedence (PEMDAS)

"Bat" + "man" => "Batman"

" toy boat " * 5
 => "toy boat toy boat toy boat toy boat toy boat"

Last time...
• str + str performs string concatenation

• str * int performs string repetition: 
 

• Operator precedence (PEMDAS)

• How integers are represented on a computer:
Converting between binary and decimal.

"Bat" + "man" => "Batman"

" toy boat " * 5
 => "toy boat toy boat toy boat toy boat toy boat"

I showed you how an int is stored.

• What about str and float?

How do you store strings?

A str is a sequence of letters (or characters).

1. Agree by convention on a number that represents each
character.

2. Convert that number to binary.

3. Store a sequence of those numbers to form a string.

How do you store strings?

A str is a sequence of letters (or characters).

1. Agree by convention on a number that represents each
character.

2. Convert that number to binary.

3. Store a sequence of those numbers to form a string.

Various conventions exist:
ASCII, Unicode

How do you store strings?

this is '\n': it's just
another character!

That’s how str works.
• What about float?

• It’s harder to write 4.3752 as a sum of
powers of two.

That’s how str works.

That’s how str works.
• Floating-point numbers are stored similarly to

scientific notation:

That’s how str works.
• Floating-point numbers are stored similarly to

scientific notation: 1399.94 = 1.39994 * 103

That’s how str works.
• Floating-point numbers are stored similarly to

scientific notation:

• Need to store the base and the exponent. In
memory, it looks something like this:

1399.94 = 1.39994 * 103

That’s how str works.
• Floating-point numbers are stored similarly to

scientific notation:

• Need to store the base and the exponent. In
memory, it looks something like this:

1399.94 = 1.39994 * 103

That’s how str works.
• Floating-point numbers are stored similarly to

scientific notation:

• Need to store the base and the exponent. In
memory, it looks something like this:

1399.94 = 1.39994 * 103

That’s how str works.
• Floating-point numbers are stored similarly to

scientific notation:

• Need to store the base and the exponent. In
memory, it looks something like this:

1399.94 = 1.39994 * 103

That’s how str works.
• Floating-point numbers are stored similarly to

scientific notation:

• Need to store the base and the exponent. In
memory, it looks something like this:

• Base and exponent are represented as base-2
integers, so the precision is finite: not all numbers
can be represented!

1399.94 = 1.39994 * 103

What have we covered so far?

What have we covered so far?
• Data is stored in memory.

What have we covered so far?
• Data is stored in memory.

integers are stored using their binary representation

What have we covered so far?
• Data is stored in memory.

• Each piece of data has a type.
integers are stored using their binary representation

What have we covered so far?
• Data is stored in memory.

• Each piece of data has a type.
integers are stored using their binary representation

so far we’ve seen: int, float, str

What have we covered so far?
• Data is stored in memory.

• Each piece of data has a type.

• Variables can assign names to pieces of
data.

integers are stored using their binary representation

so far we’ve seen: int, float, str

What have we covered so far?
• Data is stored in memory.

• Each piece of data has a type.

• Variables can assign names to pieces of
data.

integers are stored using their binary representation

so far we’ve seen: int, float, str

the assignment operator stores a value in a variable, as in:
my_var = “Hello, world!”

What have we covered so far?
• Data is stored in memory.

• Each piece of data has a type.

• Variables can assign names to pieces of
data.

• Operators can do things to the data (these
operations are performed by the CPU).

integers are stored using their binary representation

so far we’ve seen: int, float, str

the assignment operator stores a value in a variable, as in:
my_var = “Hello, world!”

What have we covered so far?
• Data is stored in memory.

• Each piece of data has a type.

• Variables can assign names to pieces of
data.

• Operators can do things to the data (these
operations are performed by the CPU).

integers are stored using their binary representation

so far we’ve seen: int, float, str

the assignment operator stores a value in a variable, as in:
my_var = “Hello, world!”

so far: assignment operator (=)
 arithmetic operators: (+,-,*,/,**,//,%)

What have we covered so far?

What have we covered so far?
• A function can take inputs (arguments) and

can produce an output (return value)

What have we covered so far?
• A function can take inputs (arguments) and

can produce an output (return value)

• Statements are instructions that are
executed

What have we covered so far?
• A function can take inputs (arguments) and

can produce an output (return value)

• Statements are instructions that are
executed

• Expressions are like phrases that can be
evaluated to determine what value they
represent.

What have we covered so far?
• A function can take inputs (arguments) and

can produce an output (return value)

• Statements are instructions that are
executed

• Expressions are like phrases that can be
evaluated to determine what value they
represent.

so far: assignment statements, such as my_var = 64 + 8

What have we covered so far?
• A function can take inputs (arguments) and

can produce an output (return value)

• Statements are instructions that are
executed

• Expressions are like phrases that can be
evaluated to determine what value they
represent.

so far: assignment statements, such as my_var = 64 + 8

so far:
• functions that return values, like int(42.8)
• arithmetic expressions, like (4 + 2) / 2
• and combinations of other expressions, like (2**3) // int(user_input)

What have we covered so far?
• A function can take inputs (arguments) and

can produce an output (return value)

• Statements are instructions that are
executed

• Expressions are like phrases that can be
evaluated to determine what value they
represent.

so far: assignment statements, such as my_var = 64 + 8

so far:
• functions that return values, like int(42.8)
• arithmetic expressions, like (4 + 2) / 2
• and combinations of other expressions, like (2**3) // int(user_input)

so far: input, print, type, int, float, str

Less than
Greater than
Less than or equal to
Greater than or equal to

<

>

<=

>=

==

!=

Some more familiar
operators

Less than
Greater than
Less than or equal to
Greater than or equal to

These ones do
what you think.<

>

<=

>=

==

!=

Some more familiar
operators

Less than
Greater than
Less than or equal to
Greater than or equal to

These ones do
what you think.<

>

<=

>=

==

!=

3 < 4
4 <= 4

6.7 > 6.3
1000 >= 1000

Some more familiar
operators

Less than
Greater than
Less than or equal to
Greater than or equal to

These ones do
what you think.<

>

<=

>=

==

!=

3 < 4
4 <= 4

6.7 > 6.3
1000 >= 1000

Some more familiar
operators

What does 3 < 4 evaluate to?
What does type(3 < 4) evaluate to?

a < b

What does 3 < 4 evaluate to?
What does type(3 < 4) evaluate to?

We need a new data type!

can only be one of two things:

a true statement or a false statement.

Boolean expressions are expressions that evaluate to one
of two possible values: True or False

a < b

What does 3 < 4 evaluate to?
What does type(3 < 4) evaluate to?

We need a new data type!

can only be one of two things:

a true statement or a false statement.

Boolean expressions are expressions that evaluate to one
of two possible values: True or False

True

a < b

What does 3 < 4 evaluate to?
What does type(3 < 4) evaluate to?

We need a new data type!

can only be one of two things:

a true statement or a false statement.

Boolean expressions are expressions that evaluate to one
of two possible values: True or False

True
bool

The bool data type

The bool data type
• Named after 19th century philosopher/

mathematician George Boole, who developed
Boolean algebra

The bool data type
• Named after 19th century philosopher/

mathematician George Boole, who developed
Boolean algebra

• A boolean value (bool) represents logical
propositions that can be either true or false.

The bool data type
• Named after 19th century philosopher/

mathematician George Boole, who developed
Boolean algebra

• A boolean value (bool) represents logical
propositions that can be either true or false.

• In Python, these values are reserved keywords:
True and False. Note capitalization.

The bool data type
• Named after 19th century philosopher/

mathematician George Boole, who developed
Boolean algebra

• A boolean value (bool) represents logical
propositions that can be either true or false.

• In Python, these values are reserved keywords:
True and False. Note capitalization.

• Can be used for things like 3 < 4 or a < b, but
also anything else that can be true or false:

The bool data type
• Named after 19th century philosopher/

mathematician George Boole, who developed
Boolean algebra

• A boolean value (bool) represents logical
propositions that can be either true or false.

• In Python, these values are reserved keywords:
True and False. Note capitalization.

• Can be used for things like 3 < 4 or a < b, but
also anything else that can be true or false:

is_raining = False

Less than
Greater than
Less than or equal to
Greater than or equal to

<

>

<=

>=

==

!=

Some more familiar
operators

Equal to

Not equal to

Less than
Greater than
Less than or equal to
Greater than or equal to

<

>

<=

>=

==

!=

Some more familiar
operators

Equal to

Not equal to

Less than
Greater than
Less than or equal to
Greater than or equal to

<

>

<=

>=

==

!=

Some more familiar
operators

Equal to

Not equal to

What does 3 == 4 evaluate to?

A. False

B. True

C. 7

D. None of the above

Less than
Greater than
Less than or equal to
Greater than or equal to

<

>

<=

>=

==

!=

Some more familiar
operators

Equal to

Not equal to

A. False

B. True

C. 7

D. None of the above

What does 5 != 4 evaluate to?

Less than
Greater than
Less than or equal to
Greater than or equal to

<

>

<=

>=

==

!=

Some more familiar
operators

What does 16 = 4*4 evaluate to?

Equal to

Not equal to

A. False

B. True

C. 7

D. None of the above

Less than
Greater than
Less than or equal to
Greater than or equal to

<

>

<=

>=

==

!=

Some more familiar
operators

What does 16 = 4*4 evaluate to?

Equal to

Not equal to

A classic mistake:

mixing up = and ==

A. False

B. True

C. 7

D. None of the above

Some more familiar
operators

Less than
Greater than
Less than or equal to
Greater than or equal to

<

>

<=

>=

==

!=

and

or

not

Equal to

Not equal to
logical conjunction, logical and
logical disjunction, logical or

logical negation, logical not

Some more familiar
operators

Less than
Greater than
Less than or equal to
Greater than or equal to

<

>

<=

>=

==

!=

and

or

not

Equal to

Not equal to
logical conjunction, logical and
logical disjunction, logical or

logical negation, logical not

Some more familiar
operators

Less than
Greater than
Less than or equal to
Greater than or equal to

<

>

<=

>=

==

!=

and

or

not

Equal to

Not equal to
logical conjunction, logical and
logical disjunction, logical or

logical negation, logical not

a and b is true only when
both a and b evaluate to True

Some more familiar
operators

Less than
Greater than
Less than or equal to
Greater than or equal to

<

>

<=

>=

==

!=

and

or

not

Equal to

Not equal to
logical conjunction, logical and
logical disjunction, logical or

logical negation, logical not

a or b is true when at least
one of a and b evaluates to True

a and b is true only when
both a and b evaluate to True

Some more familiar
operators

Less than
Greater than
Less than or equal to
Greater than or equal to

<

>

<=

>=

==

!=

and

or

not

Equal to

Not equal to
logical conjunction, logical and
logical disjunction, logical or

logical negation, logical not

a or b is true when at least
one of a and b evaluates to True

a and b is true only when
both a and b evaluate to True

not switches the value:

not True => False
not False => True

Binary vs Unary Operators
• We have already seen some binary

operators and one unary operator.

• Binary operators take two operands:

• Unary operators take one operand:

a + b
c // d
12 != 4

etc.

-b
not False

Binary vs Unary Operators
• We have already seen some binary

operators and one unary operator.

• Binary operators take two operands:

• Unary operators take one operand:

a + b
c // d
12 != 4

etc.

-b
not False

Notice: minus (—) can behave as a unary or binary operator!

Truth Tables for and, or

y

x

x and y

T F

F

T T F

F F

Truth Tables for and, or

y

x

x and y

T F

F

T T F

F F

If x is true and y is
true, x and y is true.

Truth Tables for and, or

y

x

x and y

T F

F

T T F

F F

If x is true and y is
true, x and y is true.

If x is true and y is
false, x and y is false.

Truth Tables for and, or

y

x

x and y

T F

F

T T F

F F

y

x

x or y

T F

F

T T T

T F

Operator Precedence,
Updated

Parentheses

Exponentiation (right-to-left)

Multiplication and Division

Addition and Subtraction

Numerical comparisons <, >, <=, >=, ==, !=

not

and

or

or
de

r o
f p

re
ce

de
nc

e

All are evaluated left to right
except for exponentiation.

order of evaluation

Examples
print(3 != 5 and 4 < 7)

print(3 == 5 or 4 < 7)

print(not False)

print(3 == 5 or 4 > 7)

print(not 6 < 8)

Examples
print(3 != 5 and 4 < 7)

print(3 == 5 or 4 < 7)

print(not False)

print(3 == 5 or 4 > 7)

print(not 6 < 8)

=> True and True => True

Examples
print(3 != 5 and 4 < 7)

print(3 == 5 or 4 < 7)

print(not False)

print(3 == 5 or 4 > 7)

print(not 6 < 8)

=> True and True => True

=> False or True => True

Examples
print(3 != 5 and 4 < 7)

print(3 == 5 or 4 < 7)

print(not False)

print(3 == 5 or 4 > 7)

print(not 6 < 8)

=> True and True => True

=> False or True => True

=> True

Examples
print(3 != 5 and 4 < 7)

print(3 == 5 or 4 < 7)

print(not False)

print(3 == 5 or 4 > 7)

print(not 6 < 8)

=> True and True => True

=> False or True => True

=> True

=> False or False => False

Examples
print(3 != 5 and 4 < 7)

print(3 == 5 or 4 < 7)

print(not False)

print(3 == 5 or 4 > 7)

print(not 6 < 8)

=> True and True => True

=> False or True => True

=> True

=> False or False => False

=> not True => False

Evaluate This
1 == 6 and True or (1.2 < (5 % 3))

A. False

B. True

C. 16

D. None of the above

Evaluate This
1 == 6 and True or (1.2 < (5 % 3))

Evaluate This
1 == 6 and True or (1.2 < (5 % 3))

Evaluate This
1 == 6 and True or (1.2 < (5 % 3))

1 == 6 and True or (1.2 < 2)

Evaluate This
1 == 6 and True or (1.2 < (5 % 3))

1 == 6 and True or (1.2 < 2)

Evaluate This
1 == 6 and True or (1.2 < (5 % 3))

1 == 6 and True or (1.2 < 2)

1 == 6 and True or True

Evaluate This
1 == 6 and True or (1.2 < (5 % 3))

1 == 6 and True or (1.2 < 2)

1 == 6 and True or True

Evaluate This
1 == 6 and True or (1.2 < (5 % 3))

1 == 6 and True or (1.2 < 2)

False and True or True

1 == 6 and True or True

Evaluate This
1 == 6 and True or (1.2 < (5 % 3))

1 == 6 and True or (1.2 < 2)

False and True or True

1 == 6 and True or True

Evaluate This
1 == 6 and True or (1.2 < (5 % 3))

1 == 6 and True or (1.2 < 2)

False and True or True

 False or True

1 == 6 and True or True

Evaluate This
1 == 6 and True or (1.2 < (5 % 3))

1 == 6 and True or (1.2 < 2)

False and True or True

 False or True

1 == 6 and True or True

Evaluate This
1 == 6 and True or (1.2 < (5 % 3))

1 == 6 and True or (1.2 < 2)

False and True or True

 False or True

1 == 6 and True or True

True

Preview: if statements

Next Time: if statements
Conditionals: making decisions about what
code to execute based on the value of a
boolean expression

