CSCI 141

Lecture ©:
The bool data type
Boolean Expressions
Boolean Operators

Announcements

Announcements

* A1 is due tonight!

Announcements

* A1 is due tonight!

* Please name your files as described. There are 200 of you.

Announcements

* A1 is due tonight!
* Please name your files as described. There are 200 of you.

e arithmatic.py will break our scripts and require manual handling

Announcements

* A1 is due tonight!
* Please name your files as described. There are 200 of you.
e arithmatic.py will break our scripts and require manual handling

e arithmetic-2.py will not break our scripts - you can resubmit and the latest
version will be graded.

Announcements

* A1 is due tonight!
* Please name your files as described. There are 200 of you.
e arithmatic.py will break our scripts and require manual handling

e arithmetic-2.py will not break our scripts - you can resubmit and the latest
version will be graded.

e Canvas Submission comments: | don't read them. Your TA may
not either.

Announcements

* A1 is due tonight!
* Please name your files as described. There are 200 of you.
e arithmatic.py will break our scripts and require manual handling

e arithmetic-2.py will not break our scripts - you can resubmit and the latest
version will be graded.

e Canvas Submission comments: | don't read them. Your TA may
not either.

* If you need to communicate something to me or your TA, send it by email or
Canvas message.

Announcements

* A1 is due tonight!
* Please name your files as described. There are 200 of you.
e arithmatic.py will break our scripts and require manual handling

e arithmetic-2.py will not break our scripts - you can resubmit and the latest
version will be graded.

e Canvas Submission comments: | don't read them. Your TA may
not either.

* If you need to communicate something to me or your TA, send it by email or
Canvas message.

e A2 will be out tomorrow. Due next Monday night.

Goals

» Understand the use and values of the type
bool and the meaning of a boolean

expression.

« Understand the behavior of the arithmetic
comparison operators (<, >, <=, >=, ==,

=)

« Understand the behavior of the boolean
logical operators and, or, and not

QOTD

What does the following program print? Be
sure to write the result exactly as Python
would print it out.

31

b a // 4

C (5 3 b) - 1.0

print(a, b, ¢, sep="", end="1!")

a

QOTD

The table lists the first few
powers of two, their values,
and the binary digits in the
representation of the decimal
number 19.

e In the second column, fill in
the missing powers of two.

e In the third column, fill in the
remaining digits of the
binary representation of the
decimal number 19.

Power Value Binary Digit:
2° 0
2% 1
23 8
22 4
21 2

QOTD

The table lists the first few
powers of two, their values,
and the binary digits in the
representation of the decimal
number 19.

e In the second column, fill in
the missing powers of two.

e In the third column, fill in the
remaining digits of the
binary representation of the
decimal number 19.

Power Value Binary Digit:
2° 0
24 16 1
23 8
22 4
21 2

QOTD

The table lists the first few
powers of two, their values,
and the binary digits in the
representation of the decimal
number 19.

e In the second column, fill in
the missing powers of two.

e In the third column, fill in the
remaining digits of the
binary representation of the
decimal number 19.

Power Value Binary Digit:
25 32 0
24 16 1
23 8
22 4
21 2

QOTD

The table lists the first few
powers of two, their values,
and the binary digits in the
representation of the decimal
number 19.

e In the second column, fill in
the missing powers of two.

e In the third column, fill in the
remaining digits of the
binary representation of the
decimal number 19.

Power Value Binary Digit:
25 32 0
24 16 1
23 8
22 4
21 2
20 | + 1

QOTD

The table lists the first few
powers of two, their values,
and the binary digits in the
representation of the decimal
number 19.

e In the second column, fill in
the missing powers of two.

e In the third column, fill in the
remaining digits of the
binary representation of the
decimal number 19.

Power Value Binary Digit:
25 32 0
24 16 1
23 8
22 4
21 2
20 | + 1

19

QOTD

The table lists the first few
powers of two, their values,
and the binary digits in the
representation of the decimal
number 19.

e In the second column, fill in
the missing powers of two.

e In the third column, fill in the
remaining digits of the
binary representation of the
decimal number 19.

Power Value Binary Digit:
25 32 0
24 16 1
(3 left)
23 8
22 4
21 2
20 | + 1

19

QOTD

The table lists the first few
powers of two, their values,
and the binary digits in the
representation of the decimal
number 19.

e In the second column, fill in
the missing powers of two.

e In the third column, fill in the
remaining digits of the
binary representation of the
decimal number 19.

Power Value Binary Digit:
25 32 0
24 16 1
(3 left)
23 8 0
22 4
21 2
20 | + 1

19

QOTD

The table lists the first few
powers of two, their values,
and the binary digits in the
representation of the decimal
number 19.

e In the second column, fill in
the missing powers of two.

e In the third column, fill in the
remaining digits of the
binary representation of the
decimal number 19.

Power Value Binary Digit:
25 32 0
24 16 1
(3 left)

23 8 0
22 4 0
21 2

20 | + 1

19

QOTD

The table lists the first few
powers of two, their values,
and the binary digits in the
representation of the decimal
number 19.

e In the second column, fill in
the missing powers of two.

e In the third column, fill in the
remaining digits of the
binary representation of the
decimal number 19.

Power Value Binary Digit:

25 32 0
24 16 1
(3 left)
23 8 0
22 4 0
21 2 1
20 | + 1

19

QOTD

The table lists the first few
powers of two, their values,
and the binary digits in the
representation of the decimal
number 19.

e In the second column, fill in
the missing powers of two.

e In the third column, fill in the
remaining digits of the
binary representation of the
decimal number 19.

Power Value Binary Digit:
25 32 0
24 16 1
(3 left)
23 8 0
22 4 0
21 2 1
20 | + 1 1

19

QOTD

The table lists the first few | -
powers of two, their values, Power Value Sinary Digit:
and the bingry digits in th_e 5 30 .)
representation of the decimal
number 19. 4 16 i} .
e In the second column, fill in (S Iefy
the missing powers of two. 28 8 * 0
e In the third column, fill in the
. . 22 4 * 0
remaining digits of the
binary representation of the)1 , . 1 1o
decimal number 19. (7 lery
2° | + 1 x 1

19

QOTD

The table lists the first few
powers of two, their values,
and the binary digits in the
representation of the decimal
number 19.

e In the second column, fill in
the missing powers of two.

e In the third column, fill in the
remaining digits of the
binary representation of the
decimal number 19.

Power Value Binary Digit:
25 32 0
24 16 1
(3 left)
23 8 0
22 4 0
21 2 1 (1)
2° | + 1 LI

19

QOTD

The third column of
the following table
contains the binary
representation for
what decimal
number?

Binary
Power|Value|
Digit:
2% | 8 1
22 | 4 0
21 2 1
20 | 1 0

QOTD

The third column of
the following table
contains the binary
representation for
what decimal
number?

Binary
Power|Value| _ .
Digit:
25 | 8 |* 1
22 | 4 |0
2t 1 2 |* 1
2° |+1 |* O

QOTD

The third column of
the following table
contains the binary
representation for
what decimal
number?

Binary
Power|Value| _ .
Digit:
25 | 8 |* 1
22 | 4 |0
2t 1 2 |* 1
2° |+1 |* O

QOTD

e Suppose the variable a contains a positive
integer. Write a single call to the print function
that produces the binary representation of 22 - 1.
For example, if a is 3, the program should print
the binary representation of 23 - 1 = 7. You may
print the binary representation without any
leading zeros.

* Hint: the binary representation of 22 - 1 has a
special property - try out a few examples of a to
get a feel for it.

Last time...

Last time...

e str + str performs string concatenation

Last time...

e str + str performs string concatenation
"Bat" + "man" => "Batman’

Last time...

e str + str performs string concatenation
llBatll + Ilmanll => ”Batman”
e str * int performs string repetition:

Last time...

e str + str performs string concatenation
llBatll + llmanll => "Batman”
e str * int performs string repetition:

" toy boat " * 5

Last time...

e str + str performs string concatenation
llBatll + Hmanll => "Batman"
e str * int performs string repetition:

" toy boat " * 5
=> "toy boat toy boat toy boat toy boat toy boat”

Last time...

e str + str performs string concatenation
llBatll + llmanll => "Batman"
e str * int performs string repetition:

" toy boat " * 5
=> "toy boat toy boat toy boat toy boat toy boat”

e Operator precedence (PEMDAS)

Last time...

e str + str performs string concatenation
HBatll + llmanll => "Batman”
e str * int performs string repetition:

" toy boat " * 5
=> "toy boat toy boat toy boat toy boat toy boat”

e Operator precedence (PEMDAS)

e How integers are represented on a computer:
Converting between binary and decimal.

| showed you how an int Is stored.

e \What about str and £float?

How do you store strings?

A str is a sequence of letters (or characters).

1. Agree by convention on a number that represents each
character.

2. Convert that number to binary.

3. Store a sequence of those numbers to form a string.

How do you store strings?

Various conventions exist:
ASCII, Unicode

Astrisa sequence/éf letters (or characters).

1. Agree by convention on a number that represents each
character.

2. Convert that number to binary.

3. Store a sequence of those numbers to form a string.

How do you store strings?
ASCII TABLE

Decimal Hex Char Decimal Hex Char |Decimal Hex Char | Decimal Hex Char
0 0 [NULL] 32 20 [SPACE] | 64 40 @ 96 60

1 1 [START OF HEADING] 33 21 ! 65 41 A 97 61 a
2 2 [START OF TEXT] 34 22 - 66 42 B 98 62 b
3 3 [END OF TEXT] 35 23 2 67 43 C 99 63 c
a4 a4 [END OF TRANSMISSION] | 36 24 $ 68 44 D 100 64 d
5 5 [ENQUIRY] 37 25 % 69 45 E 101 65 o
6 6 [ACKNOWLEDGE] 38 26 & 70 46 F 102 66 t
7 7 [BELL) 39 27 ' 71 47 G 103 67 g
8 8 [BACKSPACE] 40 28 (72 48 H 104 68 h
9 9 [HORIZONTAL TAB] 41 29) 73 49 I 105 69 i
10 A [LINE FEED] 42 2A . 74 4A J 106 6A
11 B FQ"C».' TAB] 43 2B + 75 4B K 107 6B k
12 C RM FEED] 44 2C , 76 4aC L 108 6C [
13 D C, RRIAGE RETURN] 45 2D - 77 4D M 109 6D m
14 £ [SHIFT OUT] 46 2E . 78 4E N 110 6E n
15 F [SHIFT IN] a7 2F 79 4F o 111 6F o
16 10 [DATA LINK zscx.pr' 48 30 0 80 50 P 112 70 p
17 11 .ona CONTROL 1] 49 31 1 81 51 Q 113 71 q
18 12 [DEVICE CONTROL 2] 50 32 2 82 52 R 114 72 r
19 13 [DEVICE CONTROL 3] 51 33 3 83 53 S 115 73 s
20 14 [DEVICE CONTROL 4] 52 34 a 84 54 T 116 74 -
21 15 [NEGATIVE ACKNOWLEDGE] | 53 35 5 85 55 U 117 75 u
22 16 [SYNCHRONOUS IDLE] 54 36 6 86 56 v 118 76 v
23 17 [ENG OF TRANS. BLOCK] 55 37 7 87 57 w 119 77 w
24 18 [CANCEL] 56 38 8 88 58 X 120 78 X
25 19 [END OF MEDIUM] 57 39 9 89 59 Y 121 79 y
26 1A [SUBSTITUTE] 58 3A : 90 S5A Z 122 7A >
27 1B [ESCAPE] 59 3B ; 91 5B [123 7B {
28 1C [FILE SEPARATOR] 60 3C < 92 5C \ 124 7C |
29 1D [GROUP SEPARATOR] 61 3D = 93 5D] 125 7D }
30 1E [RECORD SEPARATOR) 62 3E > 94 SE 2 126 7E -
31 1F [UNIT SEPARATOR] 63 3F ? 95 S5F . 127 7F [DEL]

| Decimal Hex Char |Decimal Hex Char | Decimal Hex Char
32 20 [SPACE] |64 40 @ 96 60
33 21 ! 65 a1 A 97 61 a
34 22 " 66 a2 B 98 62 b
35 23 # 67 a3 C 99 63
W |36 24 $ | 68 44 D | 100 64 d
37 25 % 69 a5 E 101 65 e
38 26 & 70 46 F 102 66 f
39 27 71 a7 G 103 67 g
40 28 | 72 48 H 104 68 h
| 41 29) |73 49 | | 105 69 i
42 2A ¢ 74 an) 106 6A]
43 2B+ 75 a8 K 107 6Bk
44 2, 76 ac L 108 6C |
45 2D - 77 aD M 109 6D m
| 46 2E . | 78 4E N | 110 6E n
47 2F | 79 aF O 111 6F o
48 30 0 80 50 P 112 70 p
49 31 1 81 51 Q 113 71 q
50 32 2 82 52 R 114 72 r
| 51 33 3 | 83 53 S | 115 73 s
52 3 4 84 54 T 116 74t
OGE] | 53 35 5 85 55 U 117 75 u
54 36 6 86 56V 118 76 v
] |55 37 7 87 57 W 119 77w
| 56 38 8 | 88 58 X | 120 78 x
57 39 9 89 59 Y 121 79y
58 3A 90 5A Z 122 Az
59 3B ; 91 58 [123 7B {
60 3¢ < 92 5C 124 7C |
| 61 3D = | 93 5D] | 125 7D}

Decimal Hex Char Decimal Hex Char |Decimal

0 0 [INULL] 32 20 [SPACE] | 64
1 1 [START OF HEADING] 33 21 ! 65
2 2 [START OF TEXT] 34 22 ! 66
3 3 [END OF TEXT] 35 23 & 67
4 4 [END OF TRANSMISSION] 36 24 $ 68
5 5 [ENQUIRY/ 37 25 % 69
6 6 [ACKNOWLEDGE] 38 26 & 70
7 7 [BELL] 39 27 ' 71
8 8 [BACKSPACE] 40 28 712
9 9 [HORIZONTAL TAB] P T . $la i 73
EC——— 'S \n IS ust gy
11 B [VERTICAL TAB] another character! 75
12 C [FORM FEED] 14 ’ 76
13 D [CARRIAGE RETURN] 45 2D - 77
14 E [SHIFT OUT] 46 2E . 78
15 F [SHIFT IN] 47 2F / 79
16 10 [DATA LINK ESCAPE] 48 30 0 80
17 11 [DEVICE CONTROL 1] 49 31 1 81
18 12 [DEVICE CONTROL 2] 50 32 2 82
19 13 [DEVICE CONTROL 3] 51 33 3 83
20 14 [DEVICE CONTROL 4] 52 34 4 84
21 15 [INEGATIVE ACKNOWLEDGE] | 53 35 5 85
22 16 [SYNCHRONOUS IDLE] 54 36 6 86
23 17 [ENG OF TRANS. BLOCK] 55 37 7 87
24 18 [CANCEL] 56 38 8 88
» 1 10 TEMD AE MEND IAM) 57 20 Q Q0

That's how str works.

e \What about float?

e |[t’'s harder to write 4.3752 as a sum of
powers of two.

That's how str works.

That's how str works.

* Floating-point numbers are stored similarly to
scientific notation:

That's how str works.

* Floating-point numbers are stored similarly to
scientific notation: 4399 94 = 1.39994 * 103

That's how str works.

* Floating-point numbers are stored similarly to
scientific notation: 4399 94 = 1.39994 * 103

* Need to store the base and the exponent. In
memory, it looks something like this:

That's how str works.

* Floating-point numbers are stored similarly to
scientific notation: 4399 94 = 1.39994 * 103

* Need to store the base and the exponent. In
memory, it looks something like this:

sign exponent(8-bit) fraction (23-bit)
L I 1

00111110001000000000000000000000 =0.15625

31 23 0

That's how str works.

* Floating-point numbers are stored similarly to
scientific notation: 4399 94 = 1.39994 * 103

* Need to store the base and the exponent. In
memory, it looks something like this:

sign exponent(8-bit) fraction (23-bit)
L I 1

00111110001000000000000000000000 =0.15625

31 23 0

That's how str works.

* Floating-point numbers are stored similarly to
scientific notation: 4399 94 = 1.39994 * 103

* Need to store the base and the exponent. In
memory, it looks something like this:

sign exponent(8-bit) fraction (23-bit)
L I 1

00111110001000000000000000000000 =0.15625

31 23 0

That's how str works.

* Floating-point numbers are stored similarly to
scientific notation: 4399 94 = 1.39994 * 103

* Need to store the base and the exponent. In
memory, it looks something like this:

sign exponent(8-bit) fraction (23-bit)
L I 1

00111110001000000000000000000000 =0.15625

31 23 0

 Base and exponent are represented as base-2
integers, so the precision is finite: not all numbers
can be represented!

What have we covered so far?

What have we covered so far?

e Data is stored in memory.

What have we covered so far?

e Data is stored in memory.

integers are stored using their binary representation

What have we covered so far?

e Data is stored in memory.

integers are stored using their binary representation

e Each piece of data has a type.

What have we covered so far?

e Data is stored in memory.

integers are stored using their binary representation

e Each piece of data has a type.

so far we’ve seen: int, float, str

What have we covered so far?

e Data is stored in memory.

integers are stored using their binary representation

e Each piece of data has a type.

so far we’ve seen: int, float, str

e Variables can assign names to pieces of
data.

What have we covered so far?

e Data is stored in memory.

Integers are stored using their binary representation

e Each piece of data has a type.

so far we’ve seen: int, float, str

e Variables can assign names to pieces of

data- the assignment operator stores a value in a variable, as in:
my var = “Hello, world!”

What have we covered so far?

e Data is stored in memory.

Integers are stored using their binary representation

e Each piece of data has a type.

so far we’ve seen: int, float, str

e Variables can assign names to pieces of

data- the assignment operator stores a value in a variable, as in:
my var = “Hello, world!”

e Operators can do things to the data (these
operations are performed by the CPU).

What have we covered so far?

e Data is stored in memory.

Integers are stored using their binary representation

e Each piece of data has a type.

so far we’ve seen: int, float, str

e Variables can assign names to pieces of

data- the assignment operator stores a value in a variable, as in:
my var = “Hello, world!”

e Operators can do things to the data (these
operations are performed by the CPU).

so far: assignment operator (=)
arithmetic operators: (+,-,*,/,**,//,%)

What have we covered so far?

What have we covered so far?

e A function can take inputs (arguments) and
can produce an output (return value)

What have we covered so far?

e A function can take inputs (arguments) and
can produce an output (return value)

e Statements are instructions that are
executed

What have we covered so far?

e A function can take inputs (arguments) and
can produce an output (return value)

e Statements are instructions that are
executed

e Expressions are like phrases that can be
evaluated to determine what value they
represent.

What have we covered so far?

e A function can take inputs (arguments) and
can produce an output (return value)

e Statements are instructions that are
executed

so far: assignment statements, such asmy var = 64 + 8

e Expressions are like phrases that can be
evaluated to determine what value they
represent.

What have we covered so far?

e A function can take inputs (arguments) and
can produce an output (return value)

e Statements are instructions that are
executed

so far: assignment statements, such asmy var = 64 + 8

e Expressions are like phrases that can be

evaluated to determine what value they
represent.

so far:

e functions that return values, like int (42.8)
e arithmetic expressions, like (4 + 2) / 2

 and combinations of other expressions, like (2**3) // int(user input)

What have we covered so far?

e A function can take inputs (arguments) and
can produce an output (return value)

so far: input, print, type, int, float, str

e Statements are instructions that are
executed

so far: assignment statements, such asmy var = 64 + 8

e Expressions are like phrases that can be

evaluated to determine what value they
represent.

so far:

e functions that return values, like int (42.8)
e arithmetic expressions, like (4 + 2) / 2

 and combinations of other expressions, like (2**3) // int(user input)

Some more familiar
operators

< Less than
> (Greater than

<= Less than or equal to
>= Greater than or equal to

Some more familiar
operators

These ones do

< Less than what you think.

> (Greater than

<= Less than or equal to
>= Greater than or equal to

Some more familiar
operators

These ones do

< Less than what you think.

> (Greater than

<= Less than or equal to
>= Greater than or equal to

Some more familiar
operators

These ones do

< Less than what you think.

> (Greater than

<= Less than or equal to
>= Greater than or equal to

What does 3 < 4 evaluate to?
What does type (3 < 4) evaluate to?

We need a new data type!

a <D>b

can only be one of two things:
a true statement or a false statement.

Boolean expressions are expressions that evaluate to one
of two possible values: True or False

What does 3 < 4 evaluate to?
What does type (3 < 4) evaluate to?

We need a new data type!

a <D>b

can only be one of two things:
a true statement or a false statement.

Boolean expressions are expressions that evaluate to one
of two possible values: True or False

What does 3 < 4 evaluate to? True
What does type (3 < 4) evaluate to?

We need a new data type!

a <D>b

can only be one of two things:
a true statement or a false statement.

Boolean expressions are expressions that evaluate to one
of two possible values: True or False

What does 3 < 4 evaluate to? True
What does type (3 < 4) evaluate to? bool

The bool data type

The bool data type

* Named after 19th century philosopher/
mathematician George Boole, who developed
Boolean algebra

The bool data type

* Named after 19th century philosopher/
mathematician George Boole, who developed
Boolean algebra

* A boolean value (bool) represents logical
propositions that can be either true or false.

The bool data type

* Named after 19th century philosopher/
mathematician George Boole, who developed
Boolean algebra

* A boolean value (bool) represents logical
propositions that can be either true or false.

* In Python, these values are reserved keywords:
True and False. Note capitalization.

The bool data type

* Named after 19th century philosopher/
mathematician George Boole, who developed
Boolean algebra

* A boolean value (bool) represents logical
propositions that can be either true or false.

* In Python, these values are reserved keywords:
True and False. Note capitalization.

e Can be used for things like 3 <4 ora < b, but
also anything else that can be true or false:

The bool data type

* Named after 19th century philosopher/
mathematician George Boole, who developed
Boolean algebra

* A boolean value (bool) represents logical
propositions that can be either true or false.

* In Python, these values are reserved keywords:
True and False. Note capitalization.

e Can be used for things like 3 <4 ora < b, but
also anything else that can be true or false:

1s raining = False

Some more familiar
operators

< Less than
> (Greater than

<= Less than or equal to
>= Greater than or equal to
== Equal to

1= Not equal to

Some more familiar
operators

< Less than
> (Greater than

<= Less than or equal to
>= Greater than or equal to
== Equal to

! = Not equal to

Some more familiar

< Less than What does 3 == 4 evaluate to?
> (Greater than
A. False
<= Less than or equal to B. True
>= Greater than or equal to C. 7
_— Equal to D. None of the above

! = Not equal to

Some more familiar

< Less than What does 5 != 4 evaluate to?
> (Greater than
A. False
<= Less than or equal to B. True
>= Greater than or equal to C. 7
_— Equal to D. None of the above

! = Not equal to

Some more familiar

< Less than What does 16 = 4+*4 evaluate to?
> (Greater than
A. False
<= Less than or equal to B. True
>= Greater than or equal to C. 7
_— Equal to D. None of the above

! = Not equal to

Some more familiar
operators

< Less than What does 16 = 4+*4 evaluate to?
> (Greater than

A. False
<= Less than or equal to B. True
>= Greater than or equal to C. 7
_— Equal to D. None of the above

= Not equal to

A classic mistake:
MIXiNng up = and ==

Some more familiar
operators

< Less than
> (Greater than

<= Less than or equal to

>= Greater than or equal to

== Equal to

1= Not equal to

and logical conjunction, logical and
or logical disjunction, logical or

not logical negation, logical not

Some more familiar
operators

< Less than
> (Greater than

<= Less than or equal to

>= (Greater than or equal to

== Equal to

1= Not equal to

and logical conjunction, logical and
or logical disjunction, logical or

not logical negation, logical not

Some more familiar
operators

< Less than a and b is true only when
> Greater than both a and b evaluate to True

<= Less than or equal to

>= (Greater than or equal to

== Equal to

1= Not equal to

and logical conjunction, logical and
or logical disjunction, logical or

not logical negation, logical not

Some more familiar

operators
< Less than a and b is true only when
> Greater than both a and b evaluate to True

<= Less than or equal to

>= Greater thanorequalto @ a or b is true when at least
—= Equal to one of a and b evaluates to True

1= Not equal to
and logical conjunction, logical and
or logical disjunction, logical or

not logical negation, logical not

Some more familiar

operators
< Less than a and b is true only when
> Greater than both a and b evaluate to True

<= Less than or equal to

>= Greater thanorequalto @ a or b is true when at least

== Equal to one of a and b evaluates to True
1= Not equal to |

not switches the value:

not True => False
not False => True

and logical conjunction, logical and
or logical disjunction, logical or

not logical negation, logical not

Binary vs Unary Operators

* \We have already seen some binary
operators and one unary operator.

e Binary operators take two operands:

a+ b
c // d etc.
12 1= 4
 Unary operators take one operand:
-b

not False

Binary vs Unary Operators

* \We have already seen some binary
operators and one unary operator.

e Binary operators take two operands:

a+ b
c // d etc.
12 1= 4
 Unary operators take one operand:
-b

not False

Notice: minus (—) can behave as a unary or binary operator!

Truth Tables for and, or

Truth Tables for and, or

X and y
Y
T F
T T F
X
FIF F

If xistrueand y Is
true, x and vy Is true.

Truth Tables for and, or

X and y
Y
T F
T E If x IS true and.y IS
false, x and y is false.
X
FIF F

If xistrueand y Is
true, x and vy Is true.

Truth Tables for and, or

X and y X Or Yy
Y Y
T F T F
T T F T T T
X X

order of precedence

Operator Precedence,
Updated

Parentheses
Exponentiation (right-to-left) g_
L . 1)
Multiplication and Division ;
iy
Addition and Subtraction e
Q
Numerical comparisons <, >, <=, >=, ==, |= Ec’..
=
not =
and
oY All are evaluated left to right

except for exponentiation.

Examples

print(3 != 5 and 4 < 7)
print(3 == 5 or 4 < 7)
print (not False)

print(3 == 5 or 4 > 7)

print(not 6 < 8)

Examples

print(3 != 5 and 4 < 7)

=> True and True => True
print(3 == 5 or 4 < 7)
print (not False)

print(3 == 5 or 4 > 7)

print(not 6 < 8)

Examples

print(3 != 5 and 4 < 7)
=> True and True => True

print(3 == 5 or 4 < 7)
=> False or True => True
print (not False)

print(3 == 5 or 4 > 7)

print(not 6 < 8)

Examples

print(3 != 5 and 4 < 7)
=> True and True => True

print(3 == 5 or 4 < 7)

=> False or True => True

print (not False)
=> True

print(3 == 5 or 4 > 7)

print(not 6 < 8)

Examples

print(3 != 5 and 4 < 7)
=> True and True => True

print(3 == 5 or 4 < 7)

=> False or True => True

print (not False)
=> True

print(3 == 5 or 4 > 7)
=> False or False => False

print(not 6 < 8)

Examples

print(3 != 5 and 4 < 7)
=> True and True => True

print(3 == 5 or 4 < 7)

=> False or True => True

print (not False)
=> True

print(3 == 5 or 4 > 7)
=> False or False => False

print(not 6 < 8)
=> not True => False

Evaluate This

1l == 6 and True or (1.2 < (5 % 3))

A. False

B. True

C. 16

D. None of the above

Evaluate This

1l == 6 and True or (1.2 < (5 % 3))

Evaluate This

1l == 6 and True or (1.2 < (5 % 3))

Evaluate This

6 and True or (1.2 < (5

6 and True or (l.2 <

3

2

3))
)

Evaluate This

6 and True or (1.2 < (5

6 and True or (l.2 <

3

2

3))
)

-

Evaluate This

6 and True or (1.2 < (5

6 and True or (l.2 <

6 and True or True

3

2

3))
)

-

Evaluate This

6 and True or (1.2 < (5

6 and True or (l.2 <

6 and True or True

3

2

3))
)

o
|
|

-
|
|

o
|
|

False

O O

@)

Evaluate This

and True

and True

and True

and True

Oor

Oor

Oor

Oor

(1.2 < (5
(1.2 <

True

True

3

2

3))
)

o
|
|

-
|
|

o
|
|

False

O O

@)

Evaluate This

and True

and True

and True

and True

Oor

Oor

Oor

Oor

(1.2 < (5
(1.2 <

True

True

3

2

3))
)

o
|
|

-
|
|

o
|
|

False

Evaluate This

@)

and

(@)

and

@)

and

and

False

True or (1.2 < (5

True

True

True

or (1.2 <

Oor

Oor

Oor

True

True

True

3

2

3))
)

o
|
|

-
|
|

o
|
|

False

Evaluate This

@)

and

(@)

and

@)

and

and

False

True or (1.2 < (5

True

True

True

or (1.2 <

Oor

Oor

Oor

True

True

True

3

2

3))
)

o
|
|

-
|
|

o
|
|

False

Evaluate This

and

O O

and

and

@)

and

False

True

True

True

True

or (1.2 < (5

or (1.2 <

Oor

Oor

Oor

True

True

True

True

3

2

3))
)

Preview: If statements

Next Time: i f statements

Conditionals: making decisions about what
code to execute based on the value of a
boolean expression

