

CSCI 141

Lecture 5: Code Execution Order of Operations Binary representation

 WWU has a Society of Women Engineers (SWE) club

- WWU has a Society of Women Engineers (SWE) club
 - CS students are eligible to join. They have cool events and career networking opportunities, among other things

- WWU has a Society of Women Engineers (SWE) club
 - CS students are eligible to join. They have cool events and career networking opportunities, among other things
 - Not just for women: men are also welcome to join

- WWU has a Society of Women Engineers (SWE) club
 - CS students are eligible to join. They have cool events and career networking opportunities, among other things
 - Not just for women: men are also welcome to join
 - Their first meeting is at 6:00pm next Wednesday in ET 321

• A1 is due Monday!

- A1 is due Monday!
 - Start soon if you haven't yet...

- A1 is due Monday!
 - Start soon if you haven't yet...
- Lab 1 is due tonight!

- A1 is due Monday!
 - Start soon if you haven't yet...
- Lab 1 is due tonight!
 - Make sure you've submitted your file on Canvas

QOTD

What will the following line print?

print(int(str("43")))

QOTD

What will the following program print?

day = "12"
year = "Saturday"
print("mon", year, sep="day", end=day)

QOTD

What will the following program print?

Goals

- Understand how the + and * operators behave with string operands.
- Know how to apply operator precedence rules to determine the order in which pieces of an expression are evaluated.
- Know how to convert a decimal number to binary and vice versa.
- Understand the basic idea behind how strings and floating-point numbers are represented on computers.

- a = 4
- b = float(2 + a)

• Consider this program:

a = 4

b = float(2 + a)

• What happens when we execute it?

• Consider this program:

a = 4

b = float(2 + a)

- What happens when we execute it?
 - the value 4 gets stored in a

• Consider this program:

a = 4

b = float(2 + a)

- What happens when we execute it?
 - the value 4 gets stored in a
 - the expression 2+a is evaluated, resulting in the value 6

• Consider this program:

a = 4

b = float(6)

- What happens when we execute it?
 - the value 4 gets stored in a
 - the expression 2+a is evaluated, resulting in the value 6

• Consider this program:

a = 4

b = float(6)

- What happens when we execute it?
 - the value 4 gets stored in a
 - the expression 2+a is evaluated, resulting in the value 6
 - 6 is passed into the float function

• Consider this program:

a = 4 b = 6.0

- What happens when we execute it?
 - the value 4 gets stored in a
 - the expression 2+a is evaluated, resulting in the value 6
 - 6 is passed into the float function
 - the float function converts 6 to a float and returns 6.0

• Consider this program:

a = 4 b = 6.0

- What happens when we execute it?
 - the value 4 gets stored in a
 - the expression 2+a is evaluated, resulting in the value 6
 - 6 is passed into the float function
 - the float function converts 6 to a float and returns 6.0
 - the value 6.0 gets stored in variable b

In what order do things get evaluated?

A function's arguments are always evaluated left-to-right before it is called:

In what order do things get evaluated?

A function's arguments are always evaluated left-to-right before it is called:

print(2+2, 4+6, int(10.4))

In what order do things get evaluated?

A function's arguments are always evaluated left-to-right before it is called:

print(2+2, 4+6, int(10.4))

print(4, 4+6, int(10.4))

In what order do things get evaluated?

A function's arguments are always evaluated left-to-right before it is called:

print(2+2, 4+6, int(10.4))
print(4, 4+6, int(10.4))
print(4, 10, int(10.4))

In what order do things get evaluated?

A function's arguments are always evaluated left-to-right before it is called:

print(2+2, 4+6, int(10.4))
print(4, 4+6, int(10.4))
print(4, 10, int(10.4))
print(4, 10, 10)

In what order do things get evaluated?

A function's arguments are always evaluated left-to-right before it is called:

print(2+2, 4+6, int(10.4))
print(4, 4+6, int(10.4))
print(4, 10, int(10.4))
print(4, 10, 10)

4 10 10 is printed to the console

- In what order do things get evaluated?
- A function's arguments are always evaluated left-to-right before it is called: print(2+2, 4+6, int(10.4))
- Parenthesized expressions are evaluated inside-out:

- In what order do things get evaluated?
- A function's arguments are always evaluated left-to-right before it is called: print(2+2, 4+6, int(10.4))
- Parenthesized expressions are evaluated inside-out: 20 // (6 + 3)

- In what order do things get evaluated?
- A function's arguments are always evaluated left-to-right before it is called: print(2+2, 4+6, int(10.4))
- Parenthesized expressions are evaluated inside-out: 20 // (6 + 3)

20 // 9

- In what order do things get evaluated?
- A function's arguments are always evaluated left-to-right before it is called: print(2+2, 4+6, int(10.4))
- Parenthesized expressions are evaluated inside-out: 20 // (6 + 3)

20 // 9

- In what order do things get evaluated?
- A function's arguments are always evaluated left-to-right before it is called print(2+2, 4+6, int(10.4))
- Parenthesized expressions are evaluated inside-out: 20 // (6 + 3)
- What about 20 // 6 + 3 ?

- In what order do things get evaluated?
- A function's arguments are always evaluated left-to-right before it is called print(2+2, 4+6, int(10.4))
- Parenthesized expressions are evaluated inside-out: 20 // (6 + 3)
- What about 20 / / 6 + 3 ?

More later on operator precedence.

A Note on Operators

- Operators only work if their operands have the correct types.
- Some operators can work on more than one type or combination of types:

A Note on Operators

- Operators only work if their operands have the correct types.
- Some operators can work on more than one type or combination of types:

Not too surprising:

int + int => int
int + float => float
float + int => float
float + float => float

A Note on Operators

- Operators only work if their operands have the correct types.
- Some operators can work on more than one type or combination of types:

```
Not too surprising: Maybe a little surprising:
int + int => int str + str => str
int + float => float str * int => str
float + int => float
float + float => float
```

A Note on Operators

- Operators only work if their operands have the correct types.
 float * str => error
- Some operators can work on more than one type or combination of types:

```
Not too surprising: Maybe a little surprising:
int + int => int str + str => str
int + float => float str * int => str
float + int => float
float + float => float
```

Demo

Demo

• operator behaviors:

Suppose we run the following program, and the user types 6 and presses enter.

What value gets stored in result?

user_num = input("Enter a number: ")
result = 5 % (3 ** (user_num // 4))

Suppose we run the following program, and the user types 6 and presses enter.

What value gets stored in result?

user_num = input("Enter a number: ")
result = 5 % (3 ** (user_num // 4))

A: 1

D: None of the above

Suppose we run the following program, and the user types 6 and presses enter.

What value gets stored in result?

user_num = input("Enter a number: ")
result = 5 % (3 ** (user_num // 4))

Let's try it out...

Suppose we run the following program, and the user types 6 and presses enter.

What value gets stored in result?

user_num = input("Enter a number: ")
result = 5 % (3 ** (user_num // 4))
A: 1
B: 2
C: 3
D: None of the above

Bugs

- We had a bug in our code!
- Why are they called bugs? An anecdote from the history of computing: September 9th, 1945(!)

Grace Hopper

At 3:45 p.m., Grace Murray Hopper records 'the first computer bug' in the Harvard Mark II computer's log book. The problem was traced to a moth stuck between relay contacts in the computer, which Hopper duly taped into the Mark II's log book with the explanation: "First actual case of bug being found." The bug was actually found by others but Hopper made the logbook entry.

Source: <u>https://www.computerhistory.org/tdih/september/9/</u>

"First actual case of a bug being found"

9/9 anton starty 0800 1.2700 9.037 847 025 037 846 95 court 1000 76415-63) 4.615925059(-2) 13 00 (032) MP - MC (033) PRO 2 2.130476415 2.130676415 failed special speed test 2 - 033 Started ine Tape (Sine check) 1100 1525 Multy Adder Relay #70 Panel F (moth) in relay. 1545 1500 andangent stanted. 1700 cloud dom.

Suppose we run the following program, and the user types 6 and presses enter.

What value gets stored in result?

user_num = int(input("Enter a number: "))
result = 5 % (3 ** (user_num // 4))

Suppose we run the following program, and the user types 6 and presses enter.

What value gets stored in result?

user_num = int(input("Enter a number: "))
result = 5 % (3 ** (user_num // 4))

Suppose we run the following program, and the user types 6 and presses enter.

What value gets stored in result?

user_num = int(input("Enter a number: "))
result = 5 % (3 ** (user_num // 4))

D: None of the above

Suppose we run the following program, and the user types 6 and presses enter.

What value gets stored in result?

user_num = int(input("Enter a number: "))
result = 5 % (3 ** (user_num // 4))

Suppose we run the following program, and the user types 6 and presses enter.

What value gets stored in result?

user_num = int(input("Enter a number: "))
result = 5 % (3 ** (user_num // 4))

user_num = int(input("Enter a number: "))
result = 5 % (3 ** (user_num // 4))
result = 5 % (3 ** (6 // 4))

user_num = int(input("Enter a number: "))
result = 5 % (3 ** (user_num // 4))
result = 5 % (3 ** (6 // 4))

user_num = int(input("Enter a number: "))
result = 5 % (3 ** (user_num // 4))
result = 5 % (3 ** (6 // 4))
result = 5 % (3 ** 1)

user_num = int(input("Enter a number: "))
result = 5 % (3 ** (user_num // 4))
result = 5 % (3 ** (6 // 4))
result = 5 % (3 ** 1)

user_num = int(input("Enter a number: "))
result = 5 % (3 ** (user_num // 4))
result = 5 % (3 ** (6 // 4))
result = 5 % (3 ** 1)
result = 5 % (3 ** 1)

user_num = int(input("Enter a number: "))
result = 5 % (3 ** (user_num // 4))
result = 5 % (3 ** (6 // 4))
result = 5 % (3 ** 1)
result = 5 % (3 ** 1)

user_num = int(input("Enter a number: "))
result = 5 % (3 ** (user_num // 4))
result = 5 % (3 ** (6 // 4))
result = 5 % (3 ** 1)
result = 5 % (3 *)
result = 5 % (3)

We know parenthesized expressions get evaluated from inside to out. Are there any other rules?

What if we took the parentheses out?

result = 5 % (3 ** (6 // 4))
result = 5 % 3 ** 6 // 4

We know parenthesized expressions get evaluated from inside to out. Are there any other rules? Yes: operator precedence.

We know parenthesized expressions get evaluated from inside to out. Are there any other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

We know parenthesized expressions get evaluated from inside to out. Are there any other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Parentheses

Exponentiation

Multiplication and Division

Addition and Subtraction

We know parenthesized expressions get evaluated from inside to out. Are there any other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Parentheses

Exponentiation

Multiplication and Division

We know parenthesized expressions get evaluated from inside to out. Are there any other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

orecedence

We know parenthesized expressions get evaluated from inside to out. Are there any other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

orecedence

We know parenthesized expressions get evaluated from inside to out. Are there any other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

We know parenthesized expressions get evaluated from inside to out. Are there any other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

orecedence

We know parenthesized expressions get evaluated from inside to out. Are there any other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

We know parenthesized expressions get evaluated from inside to out. Are there any other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

orecedence

We know parenthesized expressions get evaluated from inside to out. Are there any other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

precedence

We know parenthesized expressions get evaluated from inside to out. Are there any other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

precedence

We know parenthesized expressions get evaluated from inside to out. Are there any other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

	<u>o</u>	
Parentheses	rde	Example:
Exponentiation	r of e	2 ** 2 ** 3 (2 ** 2) ** 3
Multiplication and Division (left-to-right)	evalua	(2 ** 2) ** 3 => 4 ³ => 64
Addition and Subtraction (left-to-right)	ition	2 ** (2 ** 3)

We know parenthesized expressions get evaluated from inside to out. Are there any other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

4	Parentheses	orde	Example:
	Exponentiation	r of e	2 ** 2 ** 3 (2 ** 2) ** 3
	Multiplication and Division (left-to-right)	valua	(2 - 2) - 3 => 4 ³ => 64
	Addition and Subtraction (left-to-right)	ition	2 ** (2 ** 3) => 2 ⁸ => 256

We know parenthesized expressions get evaluated from inside to out. Are there any other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

	0		
Parentheses	rde	Example:	
Exponentiation	r of e	2 ** 2 ** 3 (2 ** 2) ** 3	
Multiplication and Division (left-to-right)	valua	(2 ** 2) ** 3 => 4 ³ => 64	
Addition and Subtraction (left-to-right)	ation	2 ** (2 ** 3) => 2 ⁸ => 256	\checkmark

We know parenthesized expressions get evaluated from inside to out. Are there any other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

	0		
Parentheses	de	Example:	
Exponentiation (right-to-left)	r of e	2 ** 2 ** 3 (2 ** 2) ** 3	
Multiplication and Division (left-to-right)	valua	(2 ** 2) ** 3 => 4 ³ => 64	
Addition and Subtraction (left-to-right)	tion	2 ** (2 ** 3) => 2 ⁸ => 256	

What does the following expression evaluate to?

1 + 2 ** 3 / 4 * 5 - (6 % 7)

- A. 4
- B. 5
- C. 6
- D. 4.0
- E. 5.0
- F. 6.0

Questions?

 What happens "under the hood" when we execute:
 result = 5

 The value 5 gets stored somewhere in main memory (and we somehow keep track of where it's stored).

 What happens "under the hood" when we execute:
 result = 5

 The value 5 gets stored somewhere in main memory (and we somehow keep track of where it's stored).

How are numbers stored in memory?

Memory is made of specialized electric circuits that provide cells that can "store" information by being in one of two states: on or off.

How are numbers stored in memory?

Memory is made of specialized electric circuits that provide cells that can "store" information by being in one of two states: on or off.

How are numbers stored in memory?

We impose mathematical meaning on these states: "off" = 0"on" = 1

How are numbers stored in memory?

We impose mathematical meaning on these states: "off" = 0 "on" = 1

How are numbers stored in memory?

We impose mathematical meaning on these states: "off" = 0"on" = 1

How are numbers stored in memory?

Each 1/0 memory location is called a bit.

8 bits is called a byte.

Metric prefixes are used to represent numbers of bytes, e.g. **kilo**, **mega**, **giga**, etc.

In computer science, kilo is not actually 1000, it's 1024.

Each 0/1 memory location stores one bit.

8 bits is called a byte.

Metric prefixes are used to represent numbers of bytes, e.g. **kilo**, **mega**, **giga**, etc. In computer science, the prefixes have slightly different meaning: kilo is not actually 1000, it's 1024.

Each 0/1 memory location stores one bit.

8 bits is called a byte.

Usual SI prefixes:

- kilo = $10^3 = 1000$
- mega = $10^6 = 1$ million
- giga = $10^9 = 1$ billion
- tera = $10^{12} = 1$ trillion

Each 0/1 memory location stores one bit.

8 bits is called a byte.

Usual SI prefixes:

- kilo = $10^3 = 1000$
- mega = $10^6 = 1$ million
- giga = $10^9 = 1$ billion
- tera = $10^{12} = 1$ trillion

Base 2 prefixes:

- kilobyte = $2^{10} = 1,024$ bytes
- megabyte = 2²⁰ = 1,048,576 bytes
- gigabyte = $2^{30} = 1,073,741,824$ bytes
- terabyte = 2⁴⁰ = 1,099,511,627,776 bytes

In decimal: $104 = 1 * 10^2$ (hundreds place) $+ 0 * 10^1$ (tens place) $+ 4 * 10^0$ (ones place)

If all we can store is 0's and 1's, how do we represent other numbers (e.g., 23?)

• By representing numbers in base 2 (binary) instead of base 10 (decimal).

In decimal:

• Observation: $104 = 1 * 10^2$ (hundreds place) + $0 * 10^1$ (tens place) + $4 * 10^0$ (ones place)

If all we can store is 0's and 1's, how do we represent other numbers (e.g., 23?)

- By representing numbers in base 2 (binary) instead of base 10 (decimal).
- Observation:

In decimal: $104 = 1 * 10^2$ (hundreds place) $+ 0 * 10^1$ (tens place) $+ 4 * 10^0$ (ones place)

If all we can store is 0's and 1's, how do we represent other numbers (e.g., 23?)

- By representing numbers in base 2 (binary) instead of base 10 (decimal).
- Observation: $104 = 1 \times 10^2$ (hundreds place) + 0 \set 10^1 (tens place) + 4 \set 10^0 (ones place)
- The decimal representation of a number is a sum of multiples of the powers of ten.

If all we can store is 0's and 1's, how do we represent other numbers (e.g., 23?)

 By representing numbers in base 2 (binary) instead of base 10 (decimal).

• Observation: $104 = 1 \times 10^2$ (hundreds place) + 0×10^1 (tens place) + 4×10^0 (ones place)

• Key idea: use 2 here instead of 10.

	1			
--	----------	--	--	--

- In decimal, each digit represents a multiple of a power of 2
- 10111 in binary is 47 in decimal.

Converting decimal to binary goes the other way. Problem: write 23 as a sum of powers of 2

Converting decimal to binary goes the other way. Problem: write 23 as a sum of powers of 2

10110101110 00011110110 0000111 0		
0 1110 11 1 10111 0 0 10 00 1 0 10 0 1 1 1 1 0 1 (00 - 0 * 04 (16)	
00101100110010000011010110010101011	$23 = ? * 2^4 (16)$	
00001 0 00 011 1010 0 0 0 0100 1 0 0 101 0 111	(/	
1110 11 0 0 101 0 1 10 0 10 0 0 011 1 0 01 00001	0 1 0 1 0 1	
11100000110111001110010101010111011	+ ? * 2 ³ (8)	
1011100 $11011001110000000000000000000$	\top · \angle (0)	
$1 \overline{0} \overline{0} \overline{0} \overline{0} \overline{0} \overline{1} \overline{0} \overline{1} \overline{1} \overline{0} \overline{0} \overline{1} \overline{0} \overline{1} \overline{0} \overline{0} \overline{0} \overline{0} \overline{0} \overline{0} \overline{1} \overline{0} \overline{1} \overline{0} \overline{0} \overline{0} \overline{0} \overline{0} \overline{1} \overline{0} \overline{1} \overline{0} \overline{0} \overline{0} \overline{0} \overline{0} \overline{1} \overline{0} \overline{0} \overline{0} \overline{0} \overline{0} \overline{1} \overline{0} \overline{0} \overline{0} \overline{0} \overline{0} \overline{0} \overline{0} 0$		
	+ ? * 2 ² (4)	
00001010101001110011110011011001010101	+ ? * 2 ² (4)	
10 11 10 10 11 11 10 01 10 11 10 01 10 01 10 01 10 11 10 01 10 11 10 10 10 11 10		
101100000 00100100111111110110101010101	+ ? * 2 ¹ (2)	
001111110111010101000000111111110101	+ ? * 2 ¹ (2)	
	$\mathbf{O} + \mathbf{O} \mathbf{O} (\mathbf{A})$	
	+ ? * 2 ⁰ (1)	
	$T i \Delta^{-} (1)$	
	-	

Converting decimal to binary goes the other way. Problem: write 23 as a sum of powers of 2

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23 =	?	* 24 ((16)
$\begin{array}{c} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 &$	+	?	* 23	(8)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+	?	* 2 ²	(4)
$\begin{array}{c} 1001110010111110011011100110010111\\ 10011000000000100100111111110101010101$	+	?	* 21	(2)
	+	?	* 20	(1)

- A. 10111
- B. 11101
- C. 01100
- D. 11110

Converting decimal to binary goes the other way. Problem: write 23 as a sum of powers of 2

10110 101110 0001 111011 0 0000111 1 0
10 1110111 101110 10 1000101001111 1 01
0010110011001000001101011001010011
00010000111010000 01001001001010010
11110 11 0 0 101 0 1 10 0 10 0 0 0 1 1 1 0 01 00001
01110000011011100111001010101111011
011100 11011001110000000010001000
10000101100100000001011001000101000100
001010011101010000000101000 111111
0000101010011100111100111110110110010101
01001110101111100110111001100110111
1101100000 001001001111111101101010101
0 01 1 11110 1 110 10 10000000 11 111110 10 1
11001001110001111001100011110000000000
.

$$23 = ? * 2^{4} (16)$$

$$+ ? * 2^{3} (8)$$

$$+ ? * 2^{2} (4)$$

$$+ ? * 2^{1} (2)$$

$$+ ? * 2^{0} (1)$$

- A. 10111
- B. 11101
- C. 01100
- D. 11110

Converting decimal to binary goes the other way. Problem: write 23 as a sum of powers of 2

101101011101000111101101000001110000000
0 11101111 1011100 10 0 10 0 101001 1 1 1
11110 1100101010100100001111 00100001
011100000110111001110010101010111001001
011100 1101100111000000000000000000000
100001101100101000001011001000101100100
00101001110101000000010100 111111
$0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1$
0 01 1 11110 1 11 0 101000000011111111010101
00100110001000000001100110010000

$$23 = ? * 24 (16)$$
 1 (23-16 = 7 left)
+ ? * 2³ (8)
+ ? * 2² (4)
+ ? * 2¹ (2)
+ ? * 2⁰ (1)

- A. 10111
- B. 11101
- C. 01100
- D. 11110

Converting decimal to binary goes the other way. Problem: write 23 as a sum of powers of 2

101101011101000111101101000011110000000
10 1110111 10111 0 0 10 0 101001111 0 0
)00010000111010000 010100101010111
0111 10 0000110111001110010100101111011
011100 1101100111000000000000000000000
10000 101100 0100000 1011001000 100000000
001010011101010000000101000 111111
0 0 0 1 0 1 0 1 0 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
101100000 0 001001001111111010010101010
0 01 1 11110 1 11 0 1010100000011111111

- C. 01100
- D. 11110

Converting decimal to binary goes the other way. Problem: write 23 as a sum of powers of 2

10110101110100011110110100001110
0 11101111 1011100 10 0 1001010111101(
011100 $110110011100000000000000000000$
10000 101100101000001011001000 10
00001010100111001111011011011001010101
10 11 10 10 11 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 10 11 10 10 11 10
101100000 0010010011111111011010010100
0 01 1 11110 1 11 0 10100000011111111010101

23 =	? * 24 (1	6)	1	(23-16 = 7 left)
+	? * 2 ³	(8)	0	(7-0 = 7 left)
+	? * 2 ²	(4)	1	(7-4 = 3 left)
+	? * 2 ¹	(2)		
+	? * 2 ⁰	(1)		

The binary representation of A. 10111 the decimal number 23 is: B. 11101

C. 01100 D 11110

Converting decimal to binary goes the other way. Problem: write 23 as a sum of powers of 2

0110 101110 0001 1110110 00 00011 1 00
10 1110111 10111 0 10 10 0 10101001111 0 10
0010110011001000001 101 011001 01 0011
000010000111010000 010010010100111
11110 11 0 0 101 0 1 10 0 10 0 0 011 1 0 01 00001
0111000001101110011100101010101111011
011100 11011001110000000010001000
10000101100100000000000101100100010001
100101001110101000000010100 111111
00001010100111001111101101110010101
01001110101111100110111001100110111
0 01 1 11 1 10 1 11 0 101 0 0000001 1 111110 10 1

23 =	? * 24 ((16)	1	(23-16 = 7 left)
+	? * 2 ³	(8)	0	(7-0 = 7 left)
+	? * 2 ²	(4)	1	(7-4 = 3 left)
+	? * 21	(2)	1	(3-2 = 1 left)
+	? * 20	(1)		

The binary representation of A. 10111 the decimal number 23 is: B. 11101

C. 01100 D 11110

Converting decimal to binary goes the other way. Problem: write 23 as a sum of powers of 2

101101011101000111101101000001110000000
0 1110 1 11 10111 0 0 10 0 101001 1 11 1 0 1 (
)01011001100110010000110101100101010101
000010000111010000 010010010100111
111101100100101010010000111100100001111
0111000001101110011100101010101111011
011100 $110110011100000000000000000000$
00001010100111001111011011011001010101
0100111010111110011011100110011001011
101100000 0 001001001111111010010101010
0 01 1 11110 1 11 0 1010000000111111110101

23 =	? * 24 (*	16)	1	(23-16 = 7 left)
+	? * 2 ³	(8)	0	(7-0 = 7 left)
+	? * 2 ²	(4)	1	(7-4 = 3 left)
+	? * 2 ¹	(2)	1	(3-2 = 1 left)
+	? * 2 ⁰	(1)	1	(1-1 = 0 left)

- C. 01100
- D. 11110

Converting decimal to binary goes the other way. Problem: write 23 as a sum of powers of 2

10110 101110 0001 1110110 00 00011 1 00
0 1110111 10111 0 0 1000010100111101(
)00010000111010000 0100001010010111
11110 11 0 0 101 0 1 0 0 10 0 0 0 1 1 1 0 01 00001
011100000011011100111001010101011100100
011100 1101100111000000000000000000000
11000011011001010000010110010001011001000100010000
10010100111010100000001010000111111111
0000101010011100111100110110010101
0100111010111110011011100110011011
1101100000 001001001111111101101010101
0 01 1 11110 1 110 1 010100000011111111
1100100111000111100100011110000101000010000

23 =	? * 24 ((16)	1	(23-16 = 7 left)
+	? * 2 ³	(8)	0	(7-0 = 7 left)
+	? * 2 ²	(4)	1	(7-4 = 3 left)
+	? * 2 ¹	(2)	1	(3-2 = 1 left)
+	? * 20	(1)	1	(1-1 = 0 left)

• What about str and float?

How do you store strings?

A str is a sequence of letters (or characters).

- 1. Agree by convention on a number that represents each character.
- 2. Convert that number to binary.
- 3. Store a sequence of those numbers to form a string.

How do you store strings?

Various conventions exist: ASCII, Unicode

Astr is a sequence of letters (or characters).

- 1. Agree by convention on a number that represents each character.
- 2. Convert that number to binary.
- 3. Store a sequence of those numbers to form a string.

How do you store strings? ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	0	96	60	S
1	1	[START OF HEADING]	33	21	1	65	41	Α	97	61	а
2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	С	99	63	с
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	е
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1.00	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	H	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i i
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	в	[VERTICAL TAB]	43	2B	+	75	4B	κ	107	6B	k
12	С	[FORM FEED]	44	2C		76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D		77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E	1.00	78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	т	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	v	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	w	119	77	w
24	18	[CANCEL]	56	38	8	88	58	Х	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	У
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	١	124	7C	1
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	-	127	7F	[DEL]

	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
	32	20	[SPACE]	64	40	0	96	60	×
	33	21	1.00	65	41	Α	97	61	а
	34	22		66	42	В	98	62	b
	35	23	#	67	43	С	99	63	с
V]	36	24	\$	68	44	D	100	64	d
	37	25	%	69	45	E	101	65	e
	38	26	&	70	46	F	102	66	f
	39	27		71	47	G	103	67	g
	40	28	(72	48	н	104	68	h
	41	29)	73	49	1	105	69	i.
	42	2A	*	74	4A	J	106	6A	j
	43	2B	+	75	4B	ĸ	107	6B	k
	44	2C		76	4C	L	108	6C	1
	45	2D	-	77	4D	M	109	6D	m
	46	2E		78	4E	N	110	6E	n
	47	2F	1	79	4F	0	111	6F	0
	48	30	0	80	50	Р	112	70	р
	49	31	1	81	51	Q	113	71	q
	50	32	2	82	52	R	114	72	r
	51	33	3	83	53	S	115	73	S
	52	34	4	84	54	т	116	74	t
DGE]	53	35	5	85	55	U	117	75	u
	54	36	6	86	56	v	118	76	v
1	55	37	7	87	57	w	119	77	w
	56	38	8	88	58	X	120	78	x
	57	39	9	89	59	Y	121	79	У
	58	ЗA	1 C	90	5A	Z	122	7A	z
	59	3B	;	91	5B	[123	7B	{
	60	3C	<	92	5C	Λ	124	7C	
	61	3D	=	93	5D	1	125	7D	}

Decimal	Hex	Char	Decimal	Hex	Char	Decimal
0	0	[NULL]	32	20	[SPACE]	64
1	1	[START OF HEADING]	33	21	1	65
2	2	[START OF TEXT]	34	22		66
3	3	[END OF TEXT]	35	23	#	67
4	4	[END OF TRANSMISSION]	36	24	\$	68
5	5	[ENQUIRY]	37	25	%	69
6	6	[ACKNOWLEDGE]	38	26	&	70
7	7	[BELL]	39	27	1	71
8	8	[BACKSPACE]	40	28	(72
9	9	[HORIZONTAL TAB] this	s is '∖n': i	t'e iu	et	73
10	А	(LINE FEED)				74
11	В	[VERTICAL TAB] and	other cha	racte	r!	75
12	С	[FORM FEED]	44	2C		76
13	D	[CARRIAGE RETURN]	45	2D	-	77
14	E	[SHIFT OUT]	46	2E		78
15	F	[SHIFT IN]	47	2F	1	79
16	10	[DATA LINK ESCAPE]	48	30	0	80
17	11	[DEVICE CONTROL 1]	49	31	1	81
18	12	[DEVICE CONTROL 2]	50	32	2	82
19	13	[DEVICE CONTROL 3]	51	33	3	83
20	14	[DEVICE CONTROL 4]	52	34	4	84
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85
22	16	[SYNCHRONOUS IDLE]	54	36	6	86
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87
24	18	[CANCEL]	56	38	8	88
25	19	(END OF MEDIUM)	57	30	9	89

- What about float?
- It's harder to write 4.3752 as a sum of powers of two.

Floating-point numbers are stored similarly to scientific notation:

 Floating-point numbers are stored similarly to scientific notation: 1399.94 = 1.39994 * 10³

- Floating-point numbers are stored similarly to scientific notation: 1399.94 = 1.39994 * 10³
- Need to store the base and the exponent. In memory, it looks something like this:

- Floating-point numbers are stored similarly to scientific notation: 1399.94 = 1.39994 * 10³
- Need to store the base and the exponent. In memory, it looks something like this:

- Floating-point numbers are stored similarly to scientific notation: 1399.94 = 1.39994 * 10³
- Need to store the base and the exponent. In memory, it looks something like this:

- Floating-point numbers are stored similarly to scientific notation: 1399.94 = 1.39994 * 10³
- Need to store the base and the exponent. In memory, it looks something like this:

- Floating-point numbers are stored similarly to scientific notation: 1399.94 = 1.39994 * 10³
- Need to store the base and the exponent. In memory, it looks something like this:

 Base and exponent are represented as base-2 integers, so the precision is finite: not all numbers can be represented!

Exercises

• Convert 1010101 to decimal.

• Convert 1023 to binary.

Next week

Making decisions:

if statements and boolean logic.