M L

g

J R v v ol ol (5 (81 87 8 o oo oy

W v T ot () ol ot (900 ot (17 (5 oy

,/ _
R e e B R e e e T AT R A4 174 7/
L, e, 14“(»1. D8~

-~h ~ o~ —)

SRR - va ..04;1

% 1&0‘..

- - - ./100 -
o -~ . e s O
“a o W

T

0D = @14&.4& —
a
D R et N

RS E D RRE (XN

~)
3 T AN

CSCI 141

Lecture 5
Code Execution
Order of Operations
Binary representation

Announcements

Announcements

e WWU has a Society of Women Engineers
(SWE) club

Announcements

e WWU has a Society of Women Engineers
(SWE) club

 CS students are eligible to join. They have cool events and
career networking opportunities, among other things

Announcements

e WWU has a Society of Women Engineers
(SWE) club

 CS students are eligible to join. They have cool events and
career networking opportunities, among other things

* Not just for women: men are also welcome to join

Announcements

e WWU has a Society of Women Engineers
(SWE) club

 CS students are eligible to join. They have cool events and
career networking opportunities, among other things

* Not just for women: men are also welcome to join

* Thelir first meeting is at 6:00pm next Wednesday in ET 321

Announcements

Announcements

* A1 is due Monday!

Announcements

* A1 is due Monday!

e Start soon if you haven't yet...

Announcements

* A1 is due Monday!

e Start soon if you haven't yet...

e Lab 1 is due tonight!

Announcements

* A1 is due Monday!

e Start soon if you haven't yet...

e Lab 1 is due tonight!

* Make sure you've submitted your file on Canvas

QOTD

What will the following line print?

print (int(str("43")))

QOTD

What will the following program print?

day = "12"
year = 'Saturday’
print('mon", year, sep='"day', end=day)

QOTD

What will the following program print?

4 // 2
b 3 // 2
C 3 % 2
print(a + b + ¢)

a

Goals

Understand how the + and * operators behave with
string operands.

Know how to apply operator precedence rules to
determine the order in which pieces of an expression
are evaluated.

Know how to convert a decimal number to binary and
vice versa.

Understand the basic idea behind how strings and
floating-point numbers are represented on computers.

Q

Code execution:
Putting it all together

4
float(2 + a)

Code execution:
Putting it all together

e Consider this program:
a = 4
b = float(2 + a)
e \What happens when we execute it?

Code execution:
Putting it all together

e Consider this program:
a = 4
b = float(2 + a)

e \What happens when we execute it?
e the value 4 gets stored in a

Code execution:
Putting it all together

e Consider this program:

a = 4
b = float(2 + a)

e \What happens when we execute it?

o 1
o 1

ne value 4 gets stored in a

ne expression 2+a is evaluated, resulting in the value 6

Code execution:
Putting it all together

e Consider this program:

a = 4
b = float(6)

e \What happens when we execute it?

o 1
o 1

ne value 4 gets stored in a

ne expression 2+a is evaluated, resulting in the value 6

Code execution:
Putting it all together

e Consider this program:
a = 4
b = float(6)

e \What happens when we execute it?
e the value 4 gets stored in a

e the expression 2+a Is evaluated, resulting in the value 6
e 6 is passed into the f£1oat function

Code execution:
Putting it all together

e Consider this program:
a = 4
b =6.0

e \What happens when we execute it?
e the value 4 gets stored in a

e the expression 2+a Is evaluated, resulting in the value 6
e 6 is passed into the f£1oat function
e the float function converts 6 to a float and returns 6.0

Code execution:
Putting it all together

e Consider this program:

a = 4
b =6.0

e \What happens when we execute it?

o 1
o 1

ne value 4 gets stored in a

ne expression 2+a is evaluated, resulting in the value 6

e 6 is passed into the f£1oat function

. t
. t

ne float function converts 6 to a float and returns 6.0

ne value 6.0 gets stored in variable b

Code execution:
Putting it all together

In what order do things get evaluated?

A function’s arguments are always evaluated
left-to-right before it is called:

Code execution:
Putting it all together

In what order do things get evaluated?

A function’s arguments are always evaluated
left-to-right before it is called:

print(2+2, 4+6, int(10.4))

Code execution:
Putting it all together

In what order do things get evaluated?

A function’s arguments are always evaluated
left-to-right before it is called:

print(2+2, 4+6, int(10.4))
print(4, 4+6, 1int(10.4))

Code execution:
Putting it all together

In what order do things get evaluated?

A function’s arguments are always evaluated
left-to-right before it is called:

print(2+2, 4+6, int(10.4))
print(4, 4+6, 1int(10.4))
print(4, 10, int(10.4))

Code execution:
Putting it all together

In what order do things get evaluated?

A function’s arguments are always evaluated
left-to-right before it is called:

print(2+2, 4+6, int(10.4))
print(4, 4+6, 1int(10.4))
print(4, 10, int(10.4))
print(4, 10, 10)

Code execution:
Putting it all together

In what order do things get evaluated?

A function’s arguments are always evaluated
left-to-right before it is called:

print(2+2, 4+6, int(10.4))
print(4, 4+6, 1int(10.4))
print(4, 10, int(10.4))
print(4, 10, 10)

4 10 10 is printed to the console

Code execution:
Putting it all together

e In what order do things get evaluated?

e A function’s arguments are always
evaluated left-to-right before it is called:

print(2+2, 4+6, int(10.4))

 Parenthesized expressions are evaluated
iINnside-out:

Code execution:
Putting it all together

e In what order do things get evaluated?

e A function’s arguments are always
evaluated left-to-right before it is called:

print(2+2, 4+6, int(10.4))

 Parenthesized expressions are evaluated
inside-out: 20 // (6 + 3)

Code execution:
Putting it all together

e In what order do things get evaluated?

e A function’s arguments are always
evaluated left-to-right before it is called:

print(2+2, 4+6, int(10.4))

 Parenthesized expressions are evaluated
inside-out: 20 // (6 + 3)

20 // 9

Code execution:
Putting it all together

e In what order do things get evaluated?

e A function’s arguments are always
evaluated left-to-right before it is called:

print(2+2, 4+6, int(10.4))
 Parenthesized expressions are evaluated
inside-out: 20 // (6 + 3)

20 // 9

=>2

Code execution:
Putting it all together

e In what order do things get evaluated?

e A function’s arguments are always
evaluated left-to-right before it is called

print(2+2, 4+6, int(10.4))

 Parenthesized expressions are evaluated
inside-out: 20 // (6 + 3)

e \What about 20 // 6 + 3 ?

Code execution:
Putting it all together

e In what order do things get evaluated?

e A function’s arguments are always
evaluated left-to-right before it is called

print(2+2, 4+6, int(10.4))

 Parenthesized expressions are evaluated
inside-out: 20 // (6 + 3)

e \What about 20 // 6 + 3 ?
More later on operator precedence.

A Note on Operators

e Operators only work if their operands have
the correct types.

e Some operators can work on more than one
type or combination of types:

A Note on Operators

e Operators only work if their operands have
the correct types.

e Some operators can work on more than one
type or combination of types:

Not too surprising:

int + i1nt => int

int + float => float
float + int => float
float + float => float

A Note on Operators

e Operators only work if their operands have
the correct types.

e Some operators can work on more than one
type or combination of types:

Not too surprising: Maybe a little surprising:
int + int => 1int str + str => str
int + float => float str * int => str

float + int => float
float + float => float

A Note on Operators

e Operators only work if their operands have

the correct types. ¢, .+ % str => error

e Some operators can work on more than one
type or combination of types:

Not too surprising: Maybe a little surprising:
int + int => 1int str + str => str
int + float => float str * int => str

float + int => float
float + float => float

Demo

4 +
4.0
4.0

14 ”n

QO W

-
-

-
-

~
w

5

* + + + + +

=>9

Demo

e operator behaviors:

5 => 9.0

5.0
llbll

=> 9.0
=> 4ugp"

1l => error

llbll

16 => “aaaaaaaaaaaaaaaa’”

=> 4ugp"

Practice Problem: Operators

Suppose we run the following program, and the user types 6
and presses enter.

What value gets stored in result?

user num = input(Enter a number: ")
result = 5 % (3 ** (user num // 4))

Practice Problem: Operators

Suppose we run the following program, and the user types 6
and presses enter.

What value gets stored in result?

user num = input(Enter a number: ")
result = 5 % (3 ** (user num // 4))

A: T
B: 2
C: 3

D: None of the above

Practice Problem: Operators

Suppose we run the following program, and the user types 6
and presses enter.

What value gets stored in result?

user num = input(Enter a number: ")
result = 5 % (3 ** (user num // 4))

Let’s try it out...

Practice Problem: Operators

Suppose we run the following program, and the user types 6
and presses enter.

What value gets stored in result?

user num = input(Enter a number: ")
result = 5 % (3 ** (user num // 4))

A: T
B: 2
C: 3

D: None of the above

Bugs

 \WWe had a bug in our code!

 \Why are they called bugs? An anecdote
from the history of computing:

Gra

)
A &

ce Hopper

September 9th, 1945(!)

At 3:45 p.m., Grace Murray Hopper records
'the first computer bug' in the Harvard Mark 11
computer's log book. The problem was traced
to a moth stuck between relay contacts in the
computer, which Hopper duly taped into the
Mark II's log book with the explanation: “First
actual case of bug being found.” The bug was
actually found by others but Hopper made the
logbook entry.

Source: https://www.computerhistory.org/tdih/september/9/

https://www.computerhistory.org/tdih/september/9/

“First actual case of a bug
being found”

1/4 o b) |
D o O Adan >w (jw / il-l']'o 7032 gy 015
1000 . 3 - an F.087 ¥YC 95 caovuh
n':‘.’i; ne -ne EISeeril) Fed) Y-0/5725057(-4)
63y PRO > 2. 130y206YiS
Caws b 2.130720y5
RIS L =2 - 033 o/a-JJ ,;ruJ Kr.oj M
{m ¢ . o uw e S
q- Y Q/Lr-‘;,i
1/79°¢ :)I;‘J'*‘J CO}\.V\C TO.P‘ (Sl.v\c f-‘\c&k)
S 2% Sohavtma AN ;“;':*ct[c,r Teet
\1Say @e\‘h\“7° ?‘-\f\g‘ r

\Mo'ﬂ).l n (2la 9

ﬁrj‘ “"\ o , bu Lc in ouv\.'k'
’g"b" %JWJ« stands) . -{ 1 \ {
[Jye 3/40,1 W .

Practice Problem: Operators

Suppose we run the following program, and the user types 6
and presses enter.

What value gets stored in result?

user num = int(input('Enter a number: "))
result = 5 % (3 ** (user num // 4))

Practice Problem: Operators

Suppose we run the following program, and the user types 6
and presses enter.

What value gets stored in result?

user num =‘int(|input("Enter a number: ")
result = 5 % (3 ** (user num // 4))

Practice Problem: Operators

Suppose we run the following program, and the user types 6
and presses enter.

What value gets stored in result?

user num = int(input('Enter a number: "))
result = 5 % (3 ** (user num // 4))

A: T
B: 2
C: 3

D: None of the above

Practice Problem: Operators

Suppose we run the following program, and the user types 6
and presses enter.

What value gets stored in result?

user num = int(input('Enter a number: "))
result = 5 % (3 ** (user num // 4))

Practice Problem: Operators

Suppose we run the following program, and the user types 6
and presses enter.

What value gets stored in result?

user num = int(input('Enter a number: "))
result = 5 % (3 ** (user num // 4))

Practice Problem: Operators

= int(input("Enter a number: "))
5 % (3 ** (user_num // 4))
5%(3 **(6 // 4))

Practice Problem: Operators

= int(input("Enter a number: "))
5 % (3 ** (user num // 4))
5 % (3 *%*)

Practice Problem: Operators

user num = int(input('Enter a number: "))
result = 5 % (3 ** (user num // 4))
result = 5 % (3 ** (6 // 4))

result = 5 % (3 ** 1)

Practice Problem: Operators

user num = int(input('Enter a number: "))
result = 5 % (3 ** (user num // 4))
result = 5 % (3 ** (6 // 4))

result = 5

Practice Problem: Operators

user num = int(input('Enter a number: "))
result = 5 % (3 ** (user num // 4))
result = 5 % (3 ** (6 // 4))

result = 5 % (3 ** 1)

result = 5 % (3)

Practice Problem: Operators

user num = int(input('Enter a number: "))
result = 5 % (3 ** (user num // 4))
result = 5 % (3 ** (6 // 4))

result = 5 % (3 ** 1)

result

Practice Problem: Operators

user num = int(input('Enter a number: "))
result = 5 % (3 ** (user num // 4))
result = 5 % (3 ** (6 // 4))

result = 5 % (3 ** 1)

result = 5 % (3)

result = 2

Order of Operations

We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules?

What if we took the parentheses out?
result = 5 % (3 ** (6 // 4))

result =5 % 3 ** 6 // 4

Order of Operations

We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Order of Operations

We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Order of Operations

We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Parentheses
Exponentiation
Multiplication and Division

Addition and Subtraction

precedence

Order of Operations

We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Parentheses
Exponentiation
Multiplication and Division

Addition and Subtraction

precedence

Order of Operations

We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Parentheses
Exponentiation
Multiplication and Division

Addition and Subtraction

uoljen|eAaa }Jo Jap.Jo

precedence

Order of Operations

We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Parentheses
Exponentiation

Multiplication and Division
(left-to-right)

Addition and Subtraction
(left-to-right)

uoljen|eAaa }Jo Jap.Jo

precedence

Order of Operations

We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

O

Parentheses =1 Example (whiteboard):

. 10 * 6 *x 2 / 5 // 11
Exponentiation

Multiplication and Division
(left-to-right)

Addition and Subtraction
(left-to-right)

uoljen|eaa jJo Jo

precedence

Order of Operations

We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Parentheses Example:

. 2 k% 2 %% 3
Exponentiation

Multiplication and Division
(left-to-right)

Addition and Subtraction
(left-to-right)

uoljen|eAaa }Jo Jap.Jo

precedence

Order of Operations

We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Parentheses Example:

Exponentiation (?-to-?)

Multiplication and Division
(left-to-right)

Addition and Subtraction
(left-to-right)

uoljen|eAaa }Jo Jap.Jo

precedence

Order of Operations

We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Parentheses Example:

. 2 k% 2 %% 3
Exponentiation

Multiplication and Division
(left-to-right)

Addition and Subtraction
(left-to-right)

uoljen|eAaa }Jo Jap.Jo

precedence

Order of Operations

We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Parentheses Example:

. 2 k% 2 %% 3
Exponentiation
(2 ** 2) ** 3

Multiplication and Division
(left-to-right)

Addition and Subtraction
(left-to-right)

uoljen|eAaa }Jo Jap.Jo

precedence

Order of Operations

We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Parentheses Example:
2 *% 2 %% 3

(2 **% 2) %% 3
=> 43 => 64

Exponentiation

Multiplication and Division
(left-to-right)

Addition and Subtraction
(left-to-right)

uoljen|eAaa }Jo Jap.Jo

precedence

Order of Operations

We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Parentheses Example:
2 *% 2 %% 3

(2 **% 2) %% 3
=> 43 => 64

Exponentiation

Multiplication and Division
(left-to-right)

Addition and Subtraction
(left-to-right)

2 ** (2 ** 3)

uoljen|eAaa }Jo Jap.Jo

precedence

Order of Operations

We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Parentheses Example:
2 *% 2 %% 3

(2 **% 2) %% 3
=> 43 => 64

Exponentiation

Multiplication and Division
(left-to-right)

Addition and Subtraction
(left-to-right)

2 ** (2 ** 3)
=> 28 => 256

uoljen|eAaa }Jo Jap.Jo

precedence

Order of Operations

We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Parentheses Example:
2 *% 2 %% 3

(2 **% 2) %% 3
=> 43 => 64

2 ** (2 **x 3) J
=> 28 => 256

Exponentiation

Multiplication and Division
(left-to-right)

Addition and Subtraction
(left-to-right)

uoljen|eAaa }Jo Jap.Jo

precedence

Order of Operations

We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Parentheses Example:
2 *% 2 %% 3

(2 **% 2) %% 3
=> 43 => 64

2 ** (2 **x 3) J
=> 28 => 256

Exponentiation (right-to-left)

Multiplication and Division
(left-to-right)

Addition and Subtraction
(left-to-right)

uoljen|eAaa }Jo Jap.Jo

PEMDAS Practice

What does the following expression evaluate to?

1 +2 %% 3 /4 %5 - (6% 7)

M H O Q W &
SN Ul B O U1

Questions?

Representing Numbers

on Computers

e What happens “under the
hood” when we execute:

result = 5

* The value 5 gets stored
somewnhere in main memory
(and we somehow keep track of
where it’s stored).

Memory

Representing Numbers

on Computers

e What happens “under the
hood” when we execute:

result = 5

* The value 5 gets stored
somewnhere in main memory
(and we somehow keep track of
where it’s stored).

Memory

Representing Numbers
on Computers

How are numbers stored in memory?

||||||||||||||||||

Zoom and enhance!

Memory is made of specialized electric circuits that provide
cells that can “store” information by being in one of two
states: on or off.

Representing Numbers
on Computers

How are numbers stored in memory?

]
|
(W}

Memory is made of specialized electric circuits that provide
cells that can “store” information by being in one of two
states: on or off.

I]
,
|l

Representing Numbers
on Computers

How are numbers stored in memory?

We impose mathematical meaning on these states:
“Oﬁ!! — O
“On” — 1

Representing Numbers
on Computers

How are numbers stored in memory?

]

=

]

Il

We impose mathematical meaning on these states:

“Oﬁ” — O
“On” — 1

Representing Numbers
on Computers

How are numbers stored in memory?

i 0 1 1 1 0

We impose mathematical meaning on these states:
“Oﬁ!! — O
“On” — 1

Representing Numbers
on Computers

How are numbers stored in memory?

Each 1/0 memory location is called a bit.

Representing Numbers
on Computers

i 0 1 1 1 O
/

Each 0/1 memory location stores one bit.

8 bits is called a byte.

Metric prefixes are used to
represent numbers of bytes,
e.g. kilo, mega, giga, etc.

In computer science, kilo is
not actually 1000, it’s 1024.

Representing Numbers
on Computers

i 0 1 1 1 O
/

Each 0/1 memory location stores one bit.

8 bits is called a byte.

| | In computer science, the
Metric prefixes are used to orefixes have slightly

represent numbers ot bytes, jitferent meaning: kilo is not
e.g. kilo, mega, giga, etc. actually 1000, it’s 1024.

Representing Numbers
on Computers

i 0 1 1 1 O

/

Each 0/1 memory location stores one bit.
8 bits is called a byte.

Usual Sl prefixes:

e kilo=103=1000

* mega=106=1 million
e giga = 10° =1 billion

e tera=1072 =1 trillion

Representing Numbers
on Computers

i 0 1 1 1 O
/

Each 0/1 memory location stores one bit.

8 bits is called a byte.

Usual Sl prefixes: Base 2 prefixes:

e kilo=103=1000 kilobyte = 210 = 1,024 bytes

* mega=106=1 million * megabyte = 220 = 1,048,576 bytes

e giga = 10° =1 billion * gigabyte = 230 =1,073,741,824 bytes

e tera=1072=1 trillion * terabyte =240 =1,099,511,627,776 bytes

Binary Representation

In decimal:

104 = 1 *102 (hundreds place)
+ 0*10' (tens place)

+ 4 *100 (ones place)

Binary Representation

If all we can store is O’s and 1’s, how do we
represent other numbers (e.g., 237)

* By representing numbers in base 2 (binary)

instead of base 10 (decimal).

In decimal:

e Observation: 104 = 1*102 (hundreds place)
+ 0*10' (tens place)
+ 4 *100 (ones place)

Binary Representation

If all we can store is O’s and 1’s, how do we
represent other numbers (e.g., 237)

* By representing numbers in base 2 (binary)

instead of base 10 (decimal).

In decimal:

e Observation: |[104| 1102 (hundreds place)
+ 07 10" (tens place)
+ 41100 (ones place)

Binary Representation

If all we can store is O’s and 1’s, how do we
represent other numbers (e.g., 237)

* By representing numbers in base 2 (binary)

instead of base 10 (decimal).

In decimal:

e Observation: |[104| 1102 (hundreds place)
+ 07 10" (tens place)
+ 41100 (ones place)

* The decimal representation of a number is a sum of
multiples of the powers of ten.

Binary Representation

If all we can store is O’s and 1’s, how do we
represent other numbers (e.g., 237)

* By representing numbers in base 2 (binary)

instead of base 10 (decimal).

In decimal:

e Observation: 104 = 1*f0e (hundreds place)
+ 0*[10' (tens place)
+ 4*100 (ones place)

e Key idea: use 2 here instead of 10.

Binary to Decimal

e In decimal, each digit represents a multiple
of a power of 2

Binary to Decimal

2° 24 23 22 2 20

e In decimal, each digit represents a multiple
of a power of 2

Binary to Decimal

2° 24 23 22 2 20

Binary to Decimal

2° 24 23 22 2 20

e In decimal, each digit represents a multiple
of a power of 2

Binary to Decimal

2° 24 23 22 2 20

e In decimal, each digit represents a multiple
of a power of 2

Binary to Decimal

2° 24 23 22 2 20

e In decimal, each digit represents a multiple
of a power of 2

Binary to Decimal

2° 24 23 22 2 20

e In decimal, each digit represents a multiple
of a power of 2

Binary to Decimal

2° 24 23 22 2 20

e In decimal, each digit represents a multiple
of a power of 2

Binary to Decimal

2° 24 23 22 2 20

e In decimal, each digit represents a multiple
of a power of 2

Binary to Decimal

10 1 1 1 1

2° 24 23 22 2 20

32 3 4 2 1

e In decimal, each digit represents a multiple
of a power of 2

Binary to Decimal

10 1 1 1 1

2° 24 23 22 2 20

32 + 8 + 4 + 2 + 1

e In decimal, each digit represents a multiple
of a power of 2

Binary to Decimal

1] 0 |1 1 11
2° 24 23 22 2 20
32 + 8 + 4 + 2 + 1

= 47

e In decimal, each digit represents a multiple

of a power of 2

Binary to Decimal

1] 0 |1 1 11
2° 24 23 22 2 20
32 + 8 + 4 + 2 + 1

= 47

e In decimal, each digit represents a multiple

of a power of 2

e 10111 in binary is 47 in decimal.

Decimal to Binary

write 23 as a sum of powers of 2

OO O =HO O viv
O v HE OO v v)
HO=OEOOMMO O OO
OO —HOOOOO

e O v

{Ow-O OO TTO = v
(OO I 1O I — OO
v v—{ i O~ O

COTH=HO=-O O —
HO O =HO O (

Converting decimal to binary goes the other way.

Problem

Decimal to Binary

OO OO v O v v
O —HAOOD v o

HO=OEOOMO O r—i—OOJd
OCO-HOO—HIOO

— OO v
Pr—HO OO ™= r=-HOO 1O O —{
- OO IRES— O v

D OO —H=HO=HOO
O O™=O O —=O

Converting decimal to binary goes the other way.

Problem: write 23 as a sum of powers of 2

Decimal to Binary

Converting decimal to binary goes the other way.

Problem: write 23 as a sum of powers of 2

A. 10111
B. 11101
C. 01100

D. 11110

The binary representation of
the decimal number 23 is:

Decimal to Binary

Converting decimal to binary goes the other way.

Problem: write 23 as a sum of powers of 2

A. 10111
B. 11101
C. 01100

D. 11110

The binary representation of
the decimal number 23 is:

Decimal to Binary

Converting decimal to binary goes the other way.

Problem: write 23 as a sum of powers of 2

(23-16 = 7 left)

1

I OO HERO — O v -
000000 OO0 —(J
{Ow=-O OO O =1 v

O T O O O
— — =

A. 10111
B. 11101
C. 01100

D. 11110

The binary representation of
the decimal number 23 is:

Decimal to Binary

Converting decimal to binary goes the other way.

Problem: write 23 as a sum of powers of 2

(23-16 = 7 left)

—{

(7-0 = 7 left)

I OO HERO — O v -
000000 OO0 —(J
{Ow=-O OO O =1 v

O T O O O

i

A. 10111
B. 11101
C. 01100

D. 11110

The binary representation of
the decimal number 23 is:

Decimal to Binary

(23-16 = 7 left)

(7-0 = 7 left)
(7-4 = 3 left)

A. 10111

The binary representation of
the decimal number 23 is:

B. 11101
C. 01100

D. 11110

I OO HERO — O v -
000000 OO0 —(J
{Ow=-O OO O =1 v
O T O O O
— — =

Converting decimal to binary goes the other way.

Problem: write 23 as a sum of powers of 2

Decimal to Binary

=

O ~ —~ —~
— £ £ £
~N O 00
__731
©

— 1.
n 9 T A
AN NDMN’NO™

(
(
(
(

T O Y

I OO HERO — O v -
000000 OO0 —(J
{Ow=-O OO O =1 v
O T O O O
— — =

Converting decimal to binary goes the other way.

Problem: write 23 as a sum of powers of 2

B. 11101
C. 01100
D. 11110

A. 10111

The binary representation of
the decimal number 23 is:

Decimal to Binary

Converting decimal to binary goes the other way.

Problem: write 23 as a sum of powers of 2

— ,u.u 0 101 —Od
—C S 011 OO
100 11111111
= O v v v lO —

100 dROOO 11 1.
OC 1(&01 =} OO v
=i OO v)

- OO0 HIRO — O -

1 OO TMEDED T O =4 O v—i
O T O O O
=i v i Or=r=e= O =

O OO 1O = {Q
v v v]] vy o O v
D OO0 HO ™= — O

= O

A. 10111
B. 11101
C. 01100

D. 11110

The binary representation of
the decimal number 23 is:

Decimal to Binary

Converting decimal to binary goes the other way.

Problem: write 23 as a sum of powers of 2

— ,u.u 0 101 —Od
—C S 011 OO
100 11111111
= O v v v lO —

100 dROOO 11 1.
OC 1(&01 =} OO v
=i OO v)

- OO0 HIRO — O -

1 OO TMEDED T O =4 O v—i
O T O O O
=i v i Or=r=e= O =

O OO 1O = {Q
v v v]] vy o O v
D OO0 HO ™= — O

= O

A. 10111
B. 11101
C. 01100

D. 11110

The binary representation of
the decimal number 23 is:

That’s how int works.

e \What about str and £float?

How do you store strings?

A str is a sequence of letters (or characters).

1. Agree by convention on a number that represents each
character.

2. Convert that number to binary.

3. Store a sequence of those numbers to form a string.

How do you store strings?

Various conventions exist:
ASCII, Unicode

Astrisa sequence/éf letters (or characters).

1. Agree by convention on a number that represents each
character.

2. Convert that number to binary.

3. Store a sequence of those numbers to form a string.

How do you store strings?
ASCII TABLE

Decimal Hex Char Decimal Hex Char |Decimal Hex Char | Decimal Hex Char
0 0 [NULL] 32 20 [SPACE] | 64 40 @ 96 60

1 1 [START OF HEADING] 33 21 ! 65 41 A 97 61 a
2 2 [START OF TEXT] 34 22 - 66 42 B 98 62 b
3 3 [END OF TEXT] 35 23 2 67 43 C 99 63 c
a4 a4 [END OF TRANSMISSION] | 36 24 $ 68 44 D 100 64 d
5 5 [ENQUIRY] 37 25 % 69 45 E 101 65 o
6 6 [ACKNOWLEDGE] 38 26 & 70 46 F 102 66 t
7 7 [BELL) 39 27 ' 71 47 G 103 67 g
8 8 [BACKSPACE] 40 28 (72 48 H 104 68 h
9 9 [HORIZONTAL TAB] 41 29) 73 49 I 105 69 i
10 A [LINE FEED] 42 2A . 74 4A J 106 6A
11 B FQ"C».' TAB] 43 2B + 75 4B K 107 6B k
12 C RM FEED] 44 2C , 76 4aC L 108 6C [
13 D C, RRIAGE RETURN] 45 2D - 77 4D M 109 6D m
14 £ [SHIFT OUT] 46 2E . 78 4E N 110 6E n
15 F [SHIFT IN] a7 2F 79 4F o 111 6F o
16 10 [DATA LINK zscx.pr' 48 30 0 80 50 P 112 70 p
17 11 .ona CONTROL 1] 49 31 1 81 51 Q 113 71 q
18 12 [DEVICE CONTROL 2] 50 32 2 82 52 R 114 72 r
19 13 [DEVICE CONTROL 3] 51 33 3 83 53 S 115 73 s
20 14 [DEVICE CONTROL 4] 52 34 a 84 54 T 116 74 -
21 15 [NEGATIVE ACKNOWLEDGE] | 53 35 5 85 55 U 117 75 u
22 16 [SYNCHRONOUS IDLE] 54 36 6 86 56 v 118 76 v
23 17 [ENG OF TRANS. BLOCK] 55 37 7 87 57 w 119 77 w
24 18 [CANCEL] 56 38 8 88 58 X 120 78 X
25 19 [END OF MEDIUM] 57 39 9 89 59 Y 121 79 y
26 1A [SUBSTITUTE] 58 3A : 90 S5A Z 122 7A >
27 1B [ESCAPE] 59 3B ; 91 5B [123 7B {
28 1C [FILE SEPARATOR] 60 3C < 92 5C \ 124 7C |
29 1D [GROUP SEPARATOR] 61 3D = 93 5D] 125 7D }
30 1E [RECORD SEPARATOR) 62 3E > 94 SE 2 126 7E -
31 1F [UNIT SEPARATOR] 63 3F ? 95 S5F . 127 7F [DEL]

| Decimal Hex Char |Decimal Hex Char | Decimal Hex Char
32 20 [SPACE] |64 40 @ 96 60
33 21 ! 65 a1 A 97 61 a
34 22 " 66 a2 B 98 62 b
35 23 # 67 a3 C 99 63
W |36 24 $ | 68 44 D | 100 64 d
37 25 % 69 a5 E 101 65 e
38 26 & 70 46 F 102 66 f
39 27 71 a7 G 103 67 g
40 28 | 72 48 H 104 68 h
| 41 29) |73 49 | | 105 69 i
42 2A ¢ 74 an) 106 6A]
43 2B+ 75 a8 K 107 6Bk
44 2, 76 ac L 108 6C |
45 2D - 77 aD M 109 6D m
| 46 2E . | 78 4E N | 110 6E n
47 2F | 79 aF O 111 6F o
48 30 0 80 50 P 112 70 p
49 31 1 81 51 Q 113 71 q
50 32 2 82 52 R 114 72 r
| 51 33 3 | 83 53 S | 115 73 s
52 3 4 84 54 T 116 74t
OGE] | 53 35 5 85 55 U 117 75 u
54 36 6 86 56V 118 76 v
] |55 37 7 87 57 W 119 77w
| 56 38 8 | 88 58 X | 120 78 x
57 39 9 89 59 Y 121 79y
58 3A 90 5A Z 122 Az
59 3B ; 91 58 [123 7B {
60 3¢ < 92 5C 124 7C |
| 61 3D = | 93 5D] | 125 7D}

Decimal Hex Char Decimal Hex Char |Decimal

0 0 [INULL] 32 20 [SPACE] | 64
1 1 [START OF HEADING] 33 21 ! 65
2 2 [START OF TEXT] 34 22 ! 66
3 3 [END OF TEXT] 35 23 & 67
4 4 [END OF TRANSMISSION] 36 24 $ 68
5 5 [ENQUIRY/ 37 25 % 69
6 6 [ACKNOWLEDGE] 38 26 & 70
7 7 [BELL] 39 27 ' 71
8 8 [BACKSPACE] 40 28 712
9 9 [HORIZONTAL TAB] P T . $la i 73
EC——— 'S \n IS ust gy
11 B [VERTICAL TAB] another character! 75
12 C [FORM FEED] 14 ’ 76
13 D [CARRIAGE RETURN] 45 2D - 77
14 E [SHIFT OUT] 46 2E . 78
15 F [SHIFT IN] 47 2F / 79
16 10 [DATA LINK ESCAPE] 48 30 0 80
17 11 [DEVICE CONTROL 1] 49 31 1 81
18 12 [DEVICE CONTROL 2] 50 32 2 82
19 13 [DEVICE CONTROL 3] 51 33 3 83
20 14 [DEVICE CONTROL 4] 52 34 4 84
21 15 [INEGATIVE ACKNOWLEDGE] | 53 35 5 85
22 16 [SYNCHRONOUS IDLE] 54 36 6 86
23 17 [ENG OF TRANS. BLOCK] 55 37 7 87
24 18 [CANCEL] 56 38 8 88
» 1 10 TEMD AE MEND IAM) 57 20 Q Q0

That's how str works.

e \What about float?

e |[t’'s harder to write 4.3752 as a sum of
powers of two.

That's how str works.

That's how str works.

* Floating-point numbers are stored similarly to
scientific notation:

That's how str works.

* Floating-point numbers are stored similarly to
scientific notation: 4399 94 = 1.39994 * 103

That's how str works.

* Floating-point numbers are stored similarly to
scientific notation: 4399 94 = 1.39994 * 103

* Need to store the base and the exponent. In
memory, it looks something like this:

That's how str works.

* Floating-point numbers are stored similarly to
scientific notation: 4399 94 = 1.39994 * 103

* Need to store the base and the exponent. In
memory, it looks something like this:

sign exponent(8-bit) fraction (23-bit)
L I 1

00111110001000000000000000000000 =0.15625

31 23 0

That's how str works.

* Floating-point numbers are stored similarly to
scientific notation: 4399 94 = 1.39994 * 103

* Need to store the base and the exponent. In
memory, it looks something like this:

sign exponent(8-bit) fraction (23-bit)
L I 1

00111110001000000000000000000000 =0.15625

31 23 0

That's how str works.

* Floating-point numbers are stored similarly to
scientific notation: 4399 94 = 1.39994 * 103

* Need to store the base and the exponent. In
memory, it looks something like this:

sign exponent(8-bit) fraction (23-bit)
L I 1

00111110001000000000000000000000 =0.15625

31 23 0

That's how str works.

* Floating-point numbers are stored similarly to
scientific notation: 4399 94 = 1.39994 * 103

* Need to store the base and the exponent. In
memory, it looks something like this:

sign exponent(8-bit) fraction (23-bit)
L I 1

00111110001000000000000000000000 =0.15625

31 23 0

 Base and exponent are represented as base-2
integers, so the precision is finite: not all numbers
can be represented!

Exercises

e Convert 1010101 to decimal.

e Convert 1023 to binary.

Next week

Making decisions:

if statements and boolean logic.

