
CSCI 141
Lecture 5:

Code Execution

Order of Operations

 Binary representation

Announcements

• WWU has a Society of Women Engineers
(SWE) club

Announcements

• WWU has a Society of Women Engineers
(SWE) club

• CS students are eligible to join. They have cool events and
career networking opportunities, among other things

Announcements

• WWU has a Society of Women Engineers
(SWE) club

• CS students are eligible to join. They have cool events and
career networking opportunities, among other things

• Not just for women: men are also welcome to join

Announcements

• WWU has a Society of Women Engineers
(SWE) club

• CS students are eligible to join. They have cool events and
career networking opportunities, among other things

• Not just for women: men are also welcome to join

• Their first meeting is at 6:00pm next Wednesday in ET 321

Announcements

Announcements

• A1 is due Monday!

Announcements

• A1 is due Monday!

• Start soon if you haven't yet...

Announcements

• A1 is due Monday!

• Start soon if you haven't yet...

• Lab 1 is due tonight!

Announcements

• A1 is due Monday!

• Start soon if you haven't yet...

• Lab 1 is due tonight!

• Make sure you've submitted your file on Canvas

Announcements

QOTD
What will the following line print?

print(int(str("43")))

QOTD
What will the following program print?

day = "12"
year = "Saturday"
print("mon", year, sep="day", end=day)

QOTD
What will the following program print?

a = 4 // 2
b = 3 // 2
c = 3 % 2
print(a + b + c)

Goals
• Understand how the + and * operators behave with

string operands.

• Know how to apply operator precedence rules to
determine the order in which pieces of an expression
are evaluated.

• Know how to convert a decimal number to binary and
vice versa.

• Understand the basic idea behind how strings and
floating-point numbers are represented on computers.

Code execution:
Putting it all together

a = 4
b = float(2 + a)

Code execution:
Putting it all together

• Consider this program:

• What happens when we execute it?

a = 4
b = float(2 + a)

Code execution:
Putting it all together

• Consider this program:

• What happens when we execute it?

• the value 4 gets stored in a

a = 4
b = float(2 + a)

Code execution:
Putting it all together

• Consider this program:

• What happens when we execute it?

• the value 4 gets stored in a

• the expression 2+a is evaluated, resulting in the value 6

a = 4
b = float(2 + a)

Code execution:
Putting it all together

• Consider this program:

• What happens when we execute it?

• the value 4 gets stored in a

• the expression 2+a is evaluated, resulting in the value 6

a = 4
b = float(6)

Code execution:
Putting it all together

• Consider this program:

• What happens when we execute it?

• the value 4 gets stored in a

• the expression 2+a is evaluated, resulting in the value 6

• 6 is passed into the float function

a = 4
b = float(6)

Code execution:
Putting it all together

• Consider this program:

• What happens when we execute it?

• the value 4 gets stored in a

• the expression 2+a is evaluated, resulting in the value 6

• 6 is passed into the float function

• the float function converts 6 to a float and returns 6.0

a = 4
b = 6.0

Code execution:
Putting it all together

• Consider this program:

• What happens when we execute it?

• the value 4 gets stored in a

• the expression 2+a is evaluated, resulting in the value 6

• 6 is passed into the float function

• the float function converts 6 to a float and returns 6.0

• the value 6.0 gets stored in variable b

a = 4
b = 6.0

Code execution:
Putting it all together

In what order do things get evaluated?

A function’s arguments are always evaluated
left-to-right before it is called: 

Code execution:
Putting it all together

In what order do things get evaluated?

A function’s arguments are always evaluated
left-to-right before it is called: 

print(2+2, 4+6, int(10.4))

Code execution:
Putting it all together

In what order do things get evaluated?

A function’s arguments are always evaluated
left-to-right before it is called: 

print(2+2, 4+6, int(10.4))

print(4, 4+6, int(10.4))

Code execution:
Putting it all together

In what order do things get evaluated?

A function’s arguments are always evaluated
left-to-right before it is called: 

print(2+2, 4+6, int(10.4))

print(4, 4+6, int(10.4))

print(4, 10, int(10.4))

Code execution:
Putting it all together

In what order do things get evaluated?

A function’s arguments are always evaluated
left-to-right before it is called: 

print(2+2, 4+6, int(10.4))

print(4, 4+6, int(10.4))

print(4, 10, int(10.4))

print(4, 10, 10)

Code execution:
Putting it all together

In what order do things get evaluated?

A function’s arguments are always evaluated
left-to-right before it is called: 

print(2+2, 4+6, int(10.4))

print(4, 4+6, int(10.4))

print(4, 10, int(10.4))

print(4, 10, 10)

4 10 10 is printed to the console

Code execution:
Putting it all together

• In what order do things get evaluated?

• A function’s arguments are always
evaluated left-to-right before it is called: 

• Parenthesized expressions are evaluated
inside-out:

print(2+2, 4+6, int(10.4))

Code execution:
Putting it all together

• In what order do things get evaluated?

• A function’s arguments are always
evaluated left-to-right before it is called: 

• Parenthesized expressions are evaluated
inside-out:

print(2+2, 4+6, int(10.4))

20 // (6 + 3)

Code execution:
Putting it all together

• In what order do things get evaluated?

• A function’s arguments are always
evaluated left-to-right before it is called: 

• Parenthesized expressions are evaluated
inside-out:

print(2+2, 4+6, int(10.4))

20 // (6 + 3)

20 // 9

Code execution:
Putting it all together

• In what order do things get evaluated?

• A function’s arguments are always
evaluated left-to-right before it is called: 

• Parenthesized expressions are evaluated
inside-out:

print(2+2, 4+6, int(10.4))

20 // (6 + 3)

20 // 9

=> 2

Code execution:
Putting it all together

• In what order do things get evaluated?

• A function’s arguments are always
evaluated left-to-right before it is called 

• Parenthesized expressions are evaluated
inside-out:

• What about

print(2+2, 4+6, int(10.4))

20 // (6 + 3)

20 // 6 + 3 ?

Code execution:
Putting it all together

• In what order do things get evaluated?

• A function’s arguments are always
evaluated left-to-right before it is called 

• Parenthesized expressions are evaluated
inside-out:

• What about

print(2+2, 4+6, int(10.4))

20 // (6 + 3)

20 // 6 + 3 ?
More later on operator precedence.

A Note on Operators
• Operators only work if their operands have

the correct types.

• Some operators can work on more than one
type or combination of types:

A Note on Operators
• Operators only work if their operands have

the correct types.

• Some operators can work on more than one
type or combination of types:

int + int => int
int + float => float
float + int => float
float + float => float

Not too surprising:

A Note on Operators
• Operators only work if their operands have

the correct types.

• Some operators can work on more than one
type or combination of types:

int + int => int
int + float => float
float + int => float
float + float => float

Not too surprising:
str + str => str
str * int => str

Maybe a little surprising:

A Note on Operators
• Operators only work if their operands have

the correct types.

• Some operators can work on more than one
type or combination of types:

int + int => int
int + float => float
float + int => float
float + float => float

Not too surprising:
str + str => str
str * int => str

Maybe a little surprising:

float * str => error

Demo

Demo
• operator behaviors:

4 + 5 => 9
4.0 + 5 => 9.0
4.0 + 5.0 => 9.0
“a” + “b” => “ab”
“a” + 1 => error
“a” + “b” => “ab”
“a” * 16 => “aaaaaaaaaaaaaaaa”

Practice Problem: Operators
Suppose we run the following program, and the user types 6
and presses enter.

What value gets stored in result? 

user_num = input("Enter a number: ")
result = 5 % (3 ** (user_num // 4))

Practice Problem: Operators
Suppose we run the following program, and the user types 6
and presses enter.

What value gets stored in result? 

A: 1

B: 2

C: 3

D: None of the above

user_num = input("Enter a number: ")
result = 5 % (3 ** (user_num // 4))

Practice Problem: Operators

Let’s try it out…

Suppose we run the following program, and the user types 6
and presses enter.

What value gets stored in result? 

user_num = input("Enter a number: ")
result = 5 % (3 ** (user_num // 4))

Practice Problem: Operators

A: 1

B: 2

C: 3

D: None of the above

Suppose we run the following program, and the user types 6
and presses enter.

What value gets stored in result? 

user_num = input("Enter a number: ")
result = 5 % (3 ** (user_num // 4))

Bugs
• We had a bug in our code!

• Why are they called bugs? An anecdote
from the history of computing:

At 3:45 p.m., Grace Murray Hopper records
'the first computer bug' in the Harvard Mark II
computer's log book. The problem was traced
to a moth stuck between relay contacts in the
computer, which Hopper duly taped into the
Mark II's log book with the explanation: “First
actual case of bug being found.” The bug was
actually found by others but Hopper made the
logbook entry.

Source: https://www.computerhistory.org/tdih/september/9/
Grace Hopper

September 9th, 1945(!)

https://www.computerhistory.org/tdih/september/9/

“First actual case of a bug
being found”

user_num = int(input("Enter a number: "))
result = 5 % (3 ** (user_num // 4))

Practice Problem: Operators
Suppose we run the following program, and the user types 6
and presses enter.

What value gets stored in result? 

user_num = int(input("Enter a number: "))
result = 5 % (3 ** (user_num // 4))

Practice Problem: Operators
Suppose we run the following program, and the user types 6
and presses enter.

What value gets stored in result? 

Practice Problem: Operators

A: 1

B: 2

C: 3

D: None of the above

Suppose we run the following program, and the user types 6
and presses enter.

What value gets stored in result? 

user_num = int(input("Enter a number: "))
result = 5 % (3 ** (user_num // 4))

user_num = int(input("Enter a number: "))
result = 5 % (3 ** (user_num // 4))

Practice Problem: Operators
Suppose we run the following program, and the user types 6
and presses enter.

What value gets stored in result? 

user_num = int(input("Enter a number: "))
result = 5 % (3 ** (user_num // 4))

Practice Problem: Operators
Suppose we run the following program, and the user types 6
and presses enter.

What value gets stored in result? 

user_num = int(input("Enter a number: "))
result = 5 % (3 ** (user_num // 4))
result = 5 % (3 ** (6 // 4))

Practice Problem: Operators

user_num = int(input("Enter a number: "))
result = 5 % (3 ** (user_num // 4))
result = 5 % (3 ** (6 // 4))

Practice Problem: Operators

user_num = int(input("Enter a number: "))
result = 5 % (3 ** (user_num // 4))
result = 5 % (3 ** (6 // 4))
result = 5 % (3 ** 1)

Practice Problem: Operators

user_num = int(input("Enter a number: "))
result = 5 % (3 ** (user_num // 4))
result = 5 % (3 ** (6 // 4))
result = 5 % (3 ** 1)

Practice Problem: Operators

user_num = int(input("Enter a number: "))
result = 5 % (3 ** (user_num // 4))
result = 5 % (3 ** (6 // 4))
result = 5 % (3 ** 1)
result = 5 % (3)

Practice Problem: Operators

user_num = int(input("Enter a number: "))
result = 5 % (3 ** (user_num // 4))
result = 5 % (3 ** (6 // 4))
result = 5 % (3 ** 1)
result = 5 % (3)

Practice Problem: Operators

user_num = int(input("Enter a number: "))
result = 5 % (3 ** (user_num // 4))
result = 5 % (3 ** (6 // 4))
result = 5 % (3 ** 1)
result = 5 % (3)
result = 2

Practice Problem: Operators

Order of Operations
We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules?

What if we took the parentheses out?

result = 5 % (3 ** (6 // 4))

result = 5 % 3 ** 6 // 4

Order of Operations
We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Order of Operations
We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Order of Operations
We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Parentheses

Exponentiation

Multiplication and Division

Addition and Subtraction

Remember PEMDAS? BIDMAS? BODMAS?

Order of Operations
We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Parentheses

Exponentiation

Multiplication and Division

Addition and Subtractionpr
ec

ed
en

ce

Remember PEMDAS? BIDMAS? BODMAS?

Order of Operations
We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Parentheses

Exponentiation

Multiplication and Division

Addition and Subtractionpr
ec

ed
en

ce

order of evaluation
Remember PEMDAS? BIDMAS? BODMAS?

Order of Operations
We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Parentheses

Exponentiation

Multiplication and Division

Addition and Subtractionpr
ec

ed
en

ce

order of evaluation

(left-to-right)

(left-to-right)

Remember PEMDAS? BIDMAS? BODMAS?

Order of Operations
We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Example (whiteboard):
10 * 6 ** 2 / 5 // 11

Parentheses

Exponentiation

Multiplication and Division

Addition and Subtractionpr
ec

ed
en

ce

order of evaluation

(left-to-right)

(left-to-right)

Order of Operations
We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Example:
2 ** 2 ** 3

Parentheses

Exponentiation

Multiplication and Division

Addition and Subtractionpr
ec

ed
en

ce

order of evaluation

(left-to-right)

(left-to-right)

Order of Operations
We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Example:
2 ** 2 ** 3

Parentheses

Exponentiation

Multiplication and Division

Addition and Subtractionpr
ec

ed
en

ce

order of evaluation

(left-to-right)

(left-to-right)

(?-to-?)

Order of Operations
We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Example:
2 ** 2 ** 3

Parentheses

Exponentiation

Multiplication and Division

Addition and Subtractionpr
ec

ed
en

ce

order of evaluation

(left-to-right)

(left-to-right)

Order of Operations
We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Example:
2 ** 2 ** 3

Parentheses

Exponentiation

Multiplication and Division

Addition and Subtractionpr
ec

ed
en

ce

order of evaluation

(left-to-right)

(left-to-right)

(2 ** 2) ** 3

Order of Operations
We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Example:
2 ** 2 ** 3

Parentheses

Exponentiation

Multiplication and Division

Addition and Subtractionpr
ec

ed
en

ce

order of evaluation

(left-to-right)

(left-to-right)

(2 ** 2) ** 3
=> 43 => 64

Order of Operations
We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Example:
2 ** 2 ** 3

Parentheses

Exponentiation

Multiplication and Division

Addition and Subtractionpr
ec

ed
en

ce

order of evaluation

(left-to-right)

(left-to-right)

(2 ** 2) ** 3
=> 43 => 64

2 ** (2 ** 3)

Order of Operations
We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Example:
2 ** 2 ** 3

Parentheses

Exponentiation

Multiplication and Division

Addition and Subtractionpr
ec

ed
en

ce

order of evaluation

(left-to-right)

(left-to-right)

(2 ** 2) ** 3
=> 43 => 64

2 ** (2 ** 3)
=> 28 => 256

Order of Operations
We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Example:
2 ** 2 ** 3

Parentheses

Exponentiation

Multiplication and Division

Addition and Subtractionpr
ec

ed
en

ce

order of evaluation

(left-to-right)

(left-to-right)

(2 ** 2) ** 3
=> 43 => 64

2 ** (2 ** 3)
=> 28 => 256

Order of Operations
We know parenthesized expressions get
evaluated from inside to out. Are there any
other rules? Yes: operator precedence.

Remember PEMDAS? BIDMAS? BODMAS?

Example:
2 ** 2 ** 3

Parentheses

Exponentiation

Multiplication and Division

Addition and Subtractionpr
ec

ed
en

ce

order of evaluation

(left-to-right)

(left-to-right)

(right-to-left)
(2 ** 2) ** 3
=> 43 => 64

2 ** (2 ** 3)
=> 28 => 256

PEMDAS Practice
What does the following expression evaluate to?

 1 + 2 ** 3 / 4 * 5 - (6 % 7)

A. 4
B. 5
C. 6
D. 4.0
E. 5.0
F. 6.0

Questions?

Representing Numbers
on Computers

• What happens “under the
hood” when we execute:

• The value 5 gets stored
somewhere in main memory
(and we somehow keep track of
where it’s stored).

result = 5

Main
Memory

Representing Numbers
on Computers

• What happens “under the
hood” when we execute:

• The value 5 gets stored
somewhere in main memory
(and we somehow keep track of
where it’s stored).

result = 5

Main
Memory

5

How are numbers stored in memory?

Representing Numbers
on Computers

Memory is made of specialized electric circuits that provide
cells that can “store” information by being in one of two
states: on or off.

Zoom and enhance!

How are numbers stored in memory?

Representing Numbers
on Computers

Memory is made of specialized electric circuits that provide
cells that can “store” information by being in one of two
states: on or off.

Zoom and enhance!

How are numbers stored in memory?

Representing Numbers
on Computers

We impose mathematical meaning on these states:

“off” = 0

“on” = 1

How are numbers stored in memory?

Representing Numbers
on Computers

We impose mathematical meaning on these states:

“off” = 0

“on” = 1

How are numbers stored in memory?

Representing Numbers
on Computers

1 0 1 1 1 0
We impose mathematical meaning on these states:

“off” = 0

“on” = 1

How are numbers stored in memory?

Representing Numbers
on Computers

1 0 1 1 1 0

Each 1/0 memory location is called a bit.

Representing Numbers
on Computers

1 0 1 1 1 0

Each 0/1 memory location stores one bit.
8 bits is called a byte.

Metric prefixes are used to
represent numbers of bytes,
e.g. kilo, mega, giga, etc.

In computer science, kilo is
not actually 1000, it’s 1024.

Representing Numbers
on Computers

1 0 1 1 1 0

Each 0/1 memory location stores one bit.
8 bits is called a byte.

Metric prefixes are used to
represent numbers of bytes,
e.g. kilo, mega, giga, etc.

In computer science, the
prefixes have slightly
different meaning: kilo is not
actually 1000, it’s 1024.

Representing Numbers
on Computers

1 0 1 1 1 0

Each 0/1 memory location stores one bit.
8 bits is called a byte.

Usual SI prefixes:

• kilo = 103 = 1000

• mega = 106 = 1 million

• giga = 109 = 1 billion

• tera = 1012 = 1 trillion

Representing Numbers
on Computers

1 0 1 1 1 0

Each 0/1 memory location stores one bit.
8 bits is called a byte.

Usual SI prefixes:

• kilo = 103 = 1000

• mega = 106 = 1 million

• giga = 109 = 1 billion

• tera = 1012 = 1 trillion

Base 2 prefixes:

• kilobyte = 210 = 1,024 bytes

• megabyte = 220 = 1,048,576 bytes

• gigabyte = 230 = 1,073,741,824 bytes

• terabyte = 240 = 1,099,511,627,776 bytes

Binary Representation

104 = 1 * 102

+ 0 * 101

+ 4 * 100

(hundreds place)
(tens place)
(ones place)

In decimal:

Binary Representation
If all we can store is 0’s and 1’s, how do we
represent other numbers (e.g., 23?)

• By representing numbers in base 2 (binary)
instead of base 10 (decimal).

• Observation: 104 = 1 * 102

+ 0 * 101

+ 4 * 100

(hundreds place)
(tens place)
(ones place)

In decimal:

Binary Representation
If all we can store is 0’s and 1’s, how do we
represent other numbers (e.g., 23?)

• By representing numbers in base 2 (binary)
instead of base 10 (decimal).

• Observation: 104 = 1 * 102

+ 0 * 101

+ 4 * 100

(hundreds place)
(tens place)
(ones place)

In decimal:

Binary Representation
If all we can store is 0’s and 1’s, how do we
represent other numbers (e.g., 23?)

• By representing numbers in base 2 (binary)
instead of base 10 (decimal).

• Observation:

• The decimal representation of a number is a sum of
multiples of the powers of ten.

104 = 1 * 102

+ 0 * 101

+ 4 * 100

(hundreds place)
(tens place)
(ones place)

In decimal:

Binary Representation
If all we can store is 0’s and 1’s, how do we
represent other numbers (e.g., 23?)

• By representing numbers in base 2 (binary)
instead of base 10 (decimal).

• Observation:

• Key idea: use 2 here instead of 10.

104 = 1 * 102

+ 0 * 101

+ 4 * 100

(hundreds place)
(tens place)
(ones place)

In decimal:

Binary to Decimal

• In decimal, each digit represents a multiple
of a power of 2

1 0 1 1 1 1

Binary to Decimal

• In decimal, each digit represents a multiple
of a power of 2

1 0 1 1 1 1
202122232425

Binary to Decimal

1 0 1 1 1 1
202122232425

Binary to Decimal

• In decimal, each digit represents a multiple
of a power of 2

1 0 1 1 1 1
202122232425

Binary to Decimal

• In decimal, each digit represents a multiple
of a power of 2

1 0 1 1 1 1
202122232425

Binary to Decimal

• In decimal, each digit represents a multiple
of a power of 2

1 0 1 1 1 1
202122232425

1

Binary to Decimal

• In decimal, each digit represents a multiple
of a power of 2

1 0 1 1 1 1
202122232425

2 1

Binary to Decimal

• In decimal, each digit represents a multiple
of a power of 2

1 0 1 1 1 1
202122232425

24 1

Binary to Decimal

• In decimal, each digit represents a multiple
of a power of 2

1 0 1 1 1 1
202122232425

248 1

Binary to Decimal

• In decimal, each digit represents a multiple
of a power of 2

1 0 1 1 1 1
202122232425

24832 1

Binary to Decimal

• In decimal, each digit represents a multiple
of a power of 2

1 0 1 1 1 1
202122232425

24832 + + + + 1

Binary to Decimal

• In decimal, each digit represents a multiple
of a power of 2

1 0 1 1 1 1
202122232425

24832 + + + + = 471

Binary to Decimal

• In decimal, each digit represents a multiple
of a power of 2

• 10111 in binary is 47 in decimal.

1 0 1 1 1 1
202122232425

24832 + + + + = 471

Decimal to Binary
Converting decimal to binary goes the other way. 
Problem: write 23 as a sum of powers of 2

Decimal to Binary
Converting decimal to binary goes the other way. 
Problem: write 23 as a sum of powers of 2

23 = ? * 24 (16)

+ ? * 23 (8)

+ ? * 22 (4)

+ ? * 21 (2)

+ ? * 20 (1)

Decimal to Binary
Converting decimal to binary goes the other way. 
Problem: write 23 as a sum of powers of 2

23 = ? * 24 (16)

+ ? * 23 (8)

+ ? * 22 (4)

+ ? * 21 (2)

+ ? * 20 (1)

The binary representation of
the decimal number 23 is:

A. 10111

B. 11101

C. 01100

D. 11110

23 = ? * 24 (16)

+ ? * 23 (8)

+ ? * 22 (4)

+ ? * 21 (2)

+ ? * 20 (1)

The binary representation of
the decimal number 23 is:

A. 10111

B. 11101

C. 01100

D. 11110

Decimal to Binary
Converting decimal to binary goes the other way. 
Problem: write 23 as a sum of powers of 2

23 = ? * 24 (16)

+ ? * 23 (8)

+ ? * 22 (4)

+ ? * 21 (2)

+ ? * 20 (1)

(23-16 = 7 left)1

The binary representation of
the decimal number 23 is:

A. 10111

B. 11101

C. 01100

D. 11110

Decimal to Binary
Converting decimal to binary goes the other way. 
Problem: write 23 as a sum of powers of 2

23 = ? * 24 (16)

+ ? * 23 (8)

+ ? * 22 (4)

+ ? * 21 (2)

+ ? * 20 (1)

(23-16 = 7 left)1
0 (7-0 = 7 left)

The binary representation of
the decimal number 23 is:

A. 10111

B. 11101

C. 01100

D. 11110

Decimal to Binary
Converting decimal to binary goes the other way. 
Problem: write 23 as a sum of powers of 2

23 = ? * 24 (16)

+ ? * 23 (8)

+ ? * 22 (4)

+ ? * 21 (2)

+ ? * 20 (1)

(23-16 = 7 left)1
0 (7-0 = 7 left)
1 (7-4 = 3 left)

The binary representation of
the decimal number 23 is:

A. 10111

B. 11101

C. 01100

D. 11110

Decimal to Binary
Converting decimal to binary goes the other way. 
Problem: write 23 as a sum of powers of 2

23 = ? * 24 (16)

+ ? * 23 (8)

+ ? * 22 (4)

+ ? * 21 (2)

+ ? * 20 (1)

(23-16 = 7 left)1
0 (7-0 = 7 left)
1 (7-4 = 3 left)
1 (3-2 = 1 left)

The binary representation of
the decimal number 23 is:

A. 10111

B. 11101

C. 01100

D. 11110

Decimal to Binary
Converting decimal to binary goes the other way. 
Problem: write 23 as a sum of powers of 2

23 = ? * 24 (16)

+ ? * 23 (8)

+ ? * 22 (4)

+ ? * 21 (2)

+ ? * 20 (1)

(23-16 = 7 left)1
0 (7-0 = 7 left)
1 (7-4 = 3 left)
1 (3-2 = 1 left)

(1-1 = 0 left)1

The binary representation of
the decimal number 23 is:

A. 10111

B. 11101

C. 01100

D. 11110

Decimal to Binary
Converting decimal to binary goes the other way. 
Problem: write 23 as a sum of powers of 2

23 = ? * 24 (16)

+ ? * 23 (8)

+ ? * 22 (4)

+ ? * 21 (2)

+ ? * 20 (1)

(23-16 = 7 left)1
0 (7-0 = 7 left)
1 (7-4 = 3 left)
1 (3-2 = 1 left)

(1-1 = 0 left)1

The binary representation of
the decimal number 23 is:

A. 10111

B. 11101

C. 01100

D. 11110

Decimal to Binary
Converting decimal to binary goes the other way. 
Problem: write 23 as a sum of powers of 2

That’s how int works.
• What about str and float?

How do you store strings?

A str is a sequence of letters (or characters).

1. Agree by convention on a number that represents each
character.

2. Convert that number to binary.

3. Store a sequence of those numbers to form a string.

How do you store strings?

A str is a sequence of letters (or characters).

1. Agree by convention on a number that represents each
character.

2. Convert that number to binary.

3. Store a sequence of those numbers to form a string.

Various conventions exist:
ASCII, Unicode

How do you store strings?

this is '\n': it's just
another character!

That’s how str works.
• What about float?

• It’s harder to write 4.3752 as a sum of
powers of two.

That’s how str works.

That’s how str works.
• Floating-point numbers are stored similarly to

scientific notation:

That’s how str works.
• Floating-point numbers are stored similarly to

scientific notation: 1399.94 = 1.39994 * 103

That’s how str works.
• Floating-point numbers are stored similarly to

scientific notation:

• Need to store the base and the exponent. In
memory, it looks something like this:

1399.94 = 1.39994 * 103

That’s how str works.
• Floating-point numbers are stored similarly to

scientific notation:

• Need to store the base and the exponent. In
memory, it looks something like this:

1399.94 = 1.39994 * 103

That’s how str works.
• Floating-point numbers are stored similarly to

scientific notation:

• Need to store the base and the exponent. In
memory, it looks something like this:

1399.94 = 1.39994 * 103

That’s how str works.
• Floating-point numbers are stored similarly to

scientific notation:

• Need to store the base and the exponent. In
memory, it looks something like this:

1399.94 = 1.39994 * 103

That’s how str works.
• Floating-point numbers are stored similarly to

scientific notation:

• Need to store the base and the exponent. In
memory, it looks something like this:

• Base and exponent are represented as base-2
integers, so the precision is finite: not all numbers
can be represented!

1399.94 = 1.39994 * 103

Exercises
• Convert 1010101 to decimal.

• Convert 1023 to binary.

Next week
Making decisions:

if statements and boolean logic.

