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Lecture 5:


Code Execution

Order of Operations


 Binary representation
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• WWU has a Society of Women Engineers 
(SWE) club

• CS students are eligible to join. They have cool events and 
career networking opportunities, among other things

• Not just for women: men are also welcome to join

• Their first meeting is at 6:00pm next Wednesday in ET 321
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• A1 is due Monday!

• Start soon if you haven't yet...

• Lab 1 is due tonight!

Announcements



• A1 is due Monday!

• Start soon if you haven't yet...

• Lab 1 is due tonight!

• Make sure you've submitted your file on Canvas

Announcements



QOTD
What will the following line print?

print(int(str("43")))



QOTD
What will the following program print?

day = "12"
year = "Saturday"
print("mon", year, sep="day", end=day)



QOTD
What will the following program print?

a = 4 // 2
b = 3 // 2
c = 3 % 2
print(a + b + c)



Goals
• Understand how the + and * operators behave with 

string operands.


• Know how to apply operator precedence rules to 
determine the order in which pieces of an expression 
are evaluated.


• Know how to convert a decimal number to binary and 
vice versa.


• Understand the basic idea behind how strings and 
floating-point numbers are represented on computers.



Code execution: 
Putting it all together

a = 4
b = float(2 + a)
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• Consider this program:


• What happens when we execute it?

• the value 4 gets stored in a

• the expression 2+a is evaluated, resulting in the value 6

• 6 is passed into the float function

• the float function converts 6 to a float and returns 6.0

a = 4
b = 6.0



Code execution: 
Putting it all together

• Consider this program:


• What happens when we execute it?

• the value 4 gets stored in a

• the expression 2+a is evaluated, resulting in the value 6

• 6 is passed into the float function

• the float function converts 6 to a float and returns 6.0

• the value 6.0 gets stored in variable b

a = 4
b = 6.0
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left-to-right before it is called: 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In what order do things get evaluated?


A function’s arguments are always evaluated 
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Code execution: 
Putting it all together

In what order do things get evaluated?


A function’s arguments are always evaluated 
left-to-right before it is called: 

print(2+2, 4+6, int(10.4))

print(4, 4+6, int(10.4))

print(4, 10, int(10.4))

print(4, 10, 10)

4 10 10 is printed to the console



Code execution: 
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inside-out:
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Code execution: 
Putting it all together

• In what order do things get evaluated?


• A function’s arguments are always 
evaluated left-to-right before it is called: 

• Parenthesized expressions are evaluated 
inside-out:

print(2+2, 4+6, int(10.4))

20 // (6 + 3)

20 // 9



Code execution: 
Putting it all together

• In what order do things get evaluated?


• A function’s arguments are always 
evaluated left-to-right before it is called: 

• Parenthesized expressions are evaluated 
inside-out:

print(2+2, 4+6, int(10.4))

20 // (6 + 3)

20 // 9

=> 2



Code execution: 
Putting it all together

• In what order do things get evaluated?


• A function’s arguments are always 
evaluated left-to-right before it is called 

• Parenthesized expressions are evaluated 
inside-out:


• What about 

print(2+2, 4+6, int(10.4))

20 // (6 + 3)

20 // 6 + 3 ?



Code execution: 
Putting it all together

• In what order do things get evaluated?


• A function’s arguments are always 
evaluated left-to-right before it is called 

• Parenthesized expressions are evaluated 
inside-out:


• What about 

print(2+2, 4+6, int(10.4))

20 // (6 + 3)

20 // 6 + 3 ?
More later on operator precedence.
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A Note on Operators
• Operators only work if their operands have 

the correct types.


• Some operators can work on more than one 
type or combination of types:

int + int => int
int + float => float
float + int => float
float + float => float

Not too surprising:
str + str => str
str * int => str

Maybe a little surprising:

float * str => error



Demo



Demo
• operator behaviors:

4 + 5 => 9
4.0 + 5 => 9.0
4.0 + 5.0 => 9.0
“a” + “b” => “ab”
“a” + 1 => error
“a” + “b” => “ab”
“a” * 16 => “aaaaaaaaaaaaaaaa”



Practice Problem: Operators
Suppose we run the following program, and the user types 6 
and presses enter. 


What value gets stored in result? 

user_num = input("Enter a number: ")
result = 5 % (3 ** (user_num // 4))
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Practice Problem: Operators

Let’s try it out…

Suppose we run the following program, and the user types 6 
and presses enter. 


What value gets stored in result? 

user_num = input("Enter a number: ")
result = 5 % (3 ** (user_num // 4))



Practice Problem: Operators

A: 1

B: 2

C: 3

D: None of the above

Suppose we run the following program, and the user types 6 
and presses enter. 


What value gets stored in result? 

user_num = input("Enter a number: ")
result = 5 % (3 ** (user_num // 4))



Bugs
• We had a bug in our code!


• Why are they called bugs? An anecdote 
from the history of computing:

At 3:45 p.m., Grace Murray Hopper records 
'the first computer bug' in the Harvard Mark II 
computer's log book. The problem was traced 
to a moth stuck between relay contacts in the 
computer, which Hopper duly taped into the 
Mark II's log book with the explanation: “First 
actual case of bug being found.” The bug was 
actually found by others but Hopper made the 
logbook entry.

Source: https://www.computerhistory.org/tdih/september/9/
Grace Hopper

September 9th, 1945(!)

https://www.computerhistory.org/tdih/september/9/


“First actual case of a bug 
being found”
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and presses enter. 
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user_num = int(input("Enter a number: "))
result = 5 % (3 ** (user_num // 4))
result = 5 % (3 ** (    6    // 4))
result = 5 % (3 **         1      )
result = 5 % (          3         )
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user_num = int(input("Enter a number: "))
result = 5 % (3 ** (user_num // 4))
result = 5 % (3 ** (    6    // 4))
result = 5 % (3 **         1      )
result = 5 % (          3         )
result =           2

Practice Problem: Operators



Order of Operations
We know parenthesized expressions get 
evaluated from inside to out. Are there any 
other rules?


What if we took the parentheses out?

   

result = 5 % (3 ** (6 // 4))

result = 5 % 3 ** 6 // 4
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Order of Operations
We know parenthesized expressions get 
evaluated from inside to out. Are there any 
other rules? Yes: operator precedence.


Remember PEMDAS? BIDMAS? BODMAS?

Example:
2 ** 2 ** 3

Parentheses


Exponentiation


Multiplication and Division


Addition and Subtractionpr
ec

ed
en

ce

order of evaluation

(left-to-right)

(left-to-right)

(right-to-left)
(2 ** 2) ** 3 
=> 43 => 64

2 ** (2 ** 3)
=> 28 => 256



PEMDAS Practice
What does the following expression evaluate to?


 1 + 2 ** 3 / 4 * 5 - (6 % 7)

A. 4
B. 5
C. 6
D. 4.0
E. 5.0
F. 6.0



Questions?



Representing Numbers 
on Computers

• What happens “under the 
hood” when we execute:


• The value 5 gets stored 
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(and we somehow keep track of 
where it’s stored).

result = 5 

Main 
Memory
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somewhere in main memory 
(and we somehow keep track of 
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result = 5 

Main 
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How are numbers stored in memory?

Representing Numbers 
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Memory is made of specialized electric circuits that provide 
cells that can “store” information by being in one of two 
states: on or off. 

Zoom and enhance!
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How are numbers stored in memory?

Representing Numbers 
on Computers
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“on” = 1



How are numbers stored in memory?

Representing Numbers 
on Computers

1 0 1 1 1 0

Each 1/0 memory location is called a bit.



Representing Numbers 
on Computers

1 0 1 1 1 0

Each 0/1 memory location stores one bit.
8 bits is called a byte.

Metric prefixes are used to 
represent numbers of bytes, 
e.g. kilo, mega, giga, etc.


In computer science, kilo is 
not actually 1000, it’s 1024.




Representing Numbers 
on Computers

1 0 1 1 1 0
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8 bits is called a byte.

Metric prefixes are used to 
represent numbers of bytes, 
e.g. kilo, mega, giga, etc.


In computer science, the 
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different meaning: kilo is not 
actually 1000, it’s 1024.




Representing Numbers 
on Computers

1 0 1 1 1 0

Each 0/1 memory location stores one bit.
8 bits is called a byte.

Usual SI prefixes:

• kilo = 103 = 1000

• mega = 106 = 1 million

• giga = 109 = 1 billion

• tera = 1012 = 1 trillion



Representing Numbers 
on Computers

1 0 1 1 1 0

Each 0/1 memory location stores one bit.
8 bits is called a byte.

Usual SI prefixes:

• kilo = 103 = 1000

• mega = 106 = 1 million

• giga = 109 = 1 billion

• tera = 1012 = 1 trillion

Base 2 prefixes:

• kilobyte = 210 = 1,024 bytes

• megabyte = 220 = 1,048,576 bytes

• gigabyte = 230 = 1,073,741,824 bytes

• terabyte = 240 = 1,099,511,627,776 bytes



Binary Representation

104 =  1 * 102

+ 0 * 101

+ 4 * 100 

(hundreds place)
(tens place)
(ones place)

In decimal:
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Binary Representation
If all we can store is 0’s and 1’s, how do we 
represent other numbers (e.g., 23?)

• By representing numbers in base 2 (binary) 
instead of base 10 (decimal).

• Observation:

• The decimal representation of a number is a sum of 
multiples of the powers of ten.
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Binary Representation
If all we can store is 0’s and 1’s, how do we 
represent other numbers (e.g., 23?)


• By representing numbers in base 2 (binary) 
instead of base 10 (decimal).


• Observation:


• Key idea: use 2 here instead of 10.

104 =  1 * 102

+ 0 * 101

+ 4 * 100 

(hundreds place)
(tens place)
(ones place)

In decimal:
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Binary to Decimal

• In decimal, each digit represents a multiple 
of a power of 2

• 10111 in binary is 47 in decimal.

1 0 1 1 1 1
202122232425

24832 + + + + = 471
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Problem: write 23 as a sum of powers of 2
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23 =  ? * 24 (16)

+ ? * 23   (8)
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+ ? * 21   (2)
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The binary representation of 
the decimal number 23 is:


A. 10111

B. 11101

C. 01100

D. 11110

Decimal to Binary
Converting decimal to binary goes the other way. 
Problem: write 23 as a sum of powers of 2



23 =  ? * 24 (16)

+ ? * 23   (8)

+ ? * 22   (4)

+ ? * 21   (2)

+ ? * 20   (1) 

(23-16 = 7 left)1
0 (7-0 = 7 left)

The binary representation of 
the decimal number 23 is:


A. 10111

B. 11101

C. 01100

D. 11110

Decimal to Binary
Converting decimal to binary goes the other way. 
Problem: write 23 as a sum of powers of 2



23 =  ? * 24 (16)

+ ? * 23   (8)

+ ? * 22   (4)

+ ? * 21   (2)

+ ? * 20   (1) 

(23-16 = 7 left)1
0 (7-0 = 7 left)
1 (7-4 = 3 left)

The binary representation of 
the decimal number 23 is:


A. 10111

B. 11101

C. 01100

D. 11110

Decimal to Binary
Converting decimal to binary goes the other way. 
Problem: write 23 as a sum of powers of 2



23 =  ? * 24 (16)

+ ? * 23   (8)

+ ? * 22   (4)

+ ? * 21   (2)

+ ? * 20   (1) 

(23-16 = 7 left)1
0 (7-0 = 7 left)
1 (7-4 = 3 left)
1 (3-2 = 1 left)

The binary representation of 
the decimal number 23 is:


A. 10111

B. 11101

C. 01100

D. 11110

Decimal to Binary
Converting decimal to binary goes the other way. 
Problem: write 23 as a sum of powers of 2



23 =  ? * 24 (16)

+ ? * 23   (8)

+ ? * 22   (4)

+ ? * 21   (2)

+ ? * 20   (1) 

(23-16 = 7 left)1
0 (7-0 = 7 left)
1 (7-4 = 3 left)
1 (3-2 = 1 left)

(1-1 = 0 left)1

The binary representation of 
the decimal number 23 is:


A. 10111

B. 11101

C. 01100

D. 11110

Decimal to Binary
Converting decimal to binary goes the other way. 
Problem: write 23 as a sum of powers of 2



23 =  ? * 24 (16)

+ ? * 23   (8)

+ ? * 22   (4)

+ ? * 21   (2)

+ ? * 20   (1) 

(23-16 = 7 left)1
0 (7-0 = 7 left)
1 (7-4 = 3 left)
1 (3-2 = 1 left)

(1-1 = 0 left)1

The binary representation of 
the decimal number 23 is:


A. 10111

B. 11101

C. 01100

D. 11110

Decimal to Binary
Converting decimal to binary goes the other way. 
Problem: write 23 as a sum of powers of 2



That’s how int works.
• What about str and float?
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A str is a sequence of letters (or characters).


1. Agree by convention on a number that represents each 
character.


2. Convert that number to binary.

3. Store a sequence of those numbers to form a string.



How do you store strings?

A str is a sequence of letters (or characters).


1. Agree by convention on a number that represents each 
character.


2. Convert that number to binary.

3. Store a sequence of those numbers to form a string.

Various conventions exist: 
ASCII, Unicode



How do you store strings?





this is '\n': it's just 
another character!



That’s how str works.
• What about float?


• It’s harder to write 4.3752 as a sum of 
powers of two.
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That’s how str works.
• Floating-point numbers are stored similarly to 

scientific notation:

• Need to store the base and the exponent. In 
memory, it looks something like this:

• Base and exponent are represented as base-2 
integers, so the precision is finite: not all numbers 
can be represented!

1399.94 = 1.39994 * 103



Exercises
• Convert 1010101 to decimal.


• Convert 1023 to binary.



Next week
Making decisions: 


if statements and boolean logic.


