
CSCI 141
Lecture 4:

More Variables

Operators and Operands

 Code Execution: Statements and Expressions

Announcements

One small syllabus change:

Announcements

One small syllabus change:

1. Previously: drop up to 9 missed poll questions. 
Now: poll questions are batched by day; drop
up to 3 days of missed polls.

Announcements

QOTD
What does the following code print?

print(int(3.91))

Which of the following programs does not
print the same thing as the others?

a = 14
b = 3
print(a, b)

a = 3
b = 14
print(14, 3)

a = 14
b = a
print(a, b)

a = 3
b = 14
print(14, a)

A: B:

D:C:

QOTD

Which of the following programs does not
print the same thing as the others?

a = 14
b = 3
print(a, b)

a = 3
b = 14
print(14, 3)

a = 14
b = a
print(a, b)

a = 3
b = 14
print(14, a)

A: B:

D:C:

QOTD

14, 3

Which of the following programs does not
print the same thing as the others?

a = 14
b = 3
print(a, b)

a = 3
b = 14
print(14, 3)

a = 14
b = a
print(a, b)

a = 3
b = 14
print(14, a)

A: B:

D:C:

QOTD

14, 3 14, 3

Which of the following programs does not
print the same thing as the others?

a = 14
b = 3
print(a, b)

a = 3
b = 14
print(14, 3)

a = 14
b = a
print(a, b)

a = 3
b = 14
print(14, a)

A: B:

D:C:

QOTD

14, 3 14, 3

14, 14

Which of the following programs does not
print the same thing as the others?

a = 14
b = 3
print(a, b)

a = 3
b = 14
print(14, 3)

a = 14
b = a
print(a, b)

a = 3
b = 14
print(14, a)

A: B:

D:C:

QOTD

14, 3 14, 3

14, 14 14, 3

Goals
• Understand how to use variables in assignment statements and elsewhere

in place of values

• Know the rules for naming variables, and the conventions for deciding on
good variable names

• Know how to use the sep, and end keyword arguments with the print
function.

• Know the definition and usage of operators and operands

• Know how to use the following operators:  
=, +, -, *, **, /, //, %

• Understand the distinction between a statement and an expression.

• Understand function calls as expressions that evaluate to their return
values.

Last time…
• A variable is a name in a program that refers

to a piece of data (or a value).

• How do you use them?

1. Decide what value you want to store in the variable

2. Decide on a sensible name

3. In your program, use the assignment operator to
store that value in the variable:

32my_age =

The assignment operator.

• Assigning a value is not stating an equality,
like in math: it’s storing a value.

A variable’s value can be updated (overwritten)
by a new value using the assignment operator.

Last time: How to read an
assignment statement

my_age = 31
my_age = 32

“my_age equals 32”

“my_age becomes 32”

“my_age gets 32”

“the variable my_age
takes on the value 32”

• Assigning a value is not stating an equality,
like in math: it’s storing a value.

A variable’s value can be updated (overwritten)
by a new value using the assignment operator.

Last time: How to read an
assignment statement

my_age = 31
my_age = 32

“my_age equals 32”

“my_age becomes 32”

“my_age gets 32”

“the variable my_age
takes on the value 32”

• Assigning a value is not stating an equality,
like in math: it’s storing a value.

A variable’s value can be updated (overwritten)
by a new value using the assignment operator.

Last time: How to read an
assignment statement

my_age = 31
my_age = 32

“my_age equals 32”

“my_age becomes 32”

“my_age gets 32”

“the variable my_age
takes on the value 32”

• Assigning a value is not stating an equality,
like in math: it’s storing a value.

A variable’s value can be updated (overwritten)
by a new value using the assignment operator.

Last time: How to read an
assignment statement

my_age = 31
my_age = 32

“my_age equals 32”

“my_age becomes 32”

“my_age gets 32”

“the variable my_age
takes on the value 32”

• Assigning a value is not stating an equality,
like in math: it’s storing a value.

A variable’s value can be updated (overwritten)
by a new value using the assignment operator.

Last time: How to read an
assignment statement

my_age = 31
my_age = 32

“my_age equals 32”

“my_age becomes 32”

“my_age gets 32”

“the variable my_age
takes on the value 32”

What can you do with
variables?

Use them anywhere you’d use a value!

These two programs both print 5.

print(5) a = 5
print(a)

Variable Names

Variable Names
• How do you use variables?

1. Decide what value you want to store in the variable

2. Decide on a sensible name

3. In your program, use the assignment operator to
store that value in the variable

Variable Names
• How do you use variables?

1. Decide what value you want to store in the variable

2. Decide on a sensible name

3. In your program, use the assignment operator to
store that value in the variable

• Great power, great responsibility: 
variables names can be almost anything!

Variable Names
• Great power, great responsibility: 

variables names can be almost anything!

• Valid variable names:

• start with a letter or an underscore (_)

• can contain any letters and digits

• are case-sensitive (name is not the same as Name)

• are not the same as any Python language keywords (words
that already mean something else):

False, None, True, and, as, assert, async, await, break, class,
continue, def, del, elif, else, except, finally, for, from,
global, if, import, in, is, lambda, nonlocal, not, or, pass,
raise, return, try, while, with, yield

2plus2True a_number firstOfThreeValues

Variable Names
• Great power, great responsibility: 

variables names can be almost anything!

• Valid variable names:

• start with a letter or an underscore (_)

• can contain any letters and digits

• are case-sensitive (name is not the same as Name)

• are not the same as any Python language keywords (words
that already mean something else):

False, None, True, and, as, assert, async, await, break, class,
continue, def, del, elif, else, except, finally, for, from,
global, if, import, in, is, lambda, nonlocal, not, or, pass,
raise, return, try, while, with, yield

2plus2True a_number firstOfThreeValues

Variable Names
• Great power, great responsibility: 

variables names can be almost anything!

• Valid variable names:

• start with a letter or an underscore (_)

• can contain any letters and digits

• are case-sensitive (name is not the same as Name)

• are not the same as any Python language keywords (words
that already mean something else):

False, None, True, and, as, assert, async, await, break, class,
continue, def, del, elif, else, except, finally, for, from,
global, if, import, in, is, lambda, nonlocal, not, or, pass,
raise, return, try, while, with, yield

2plus2True a_number firstOfThreeValues

Variable Names
• Great power, great responsibility: 

variables names can be almost anything!

• Valid variable names:

• start with a letter or an underscore (_)

• can contain any letters and digits

• are case-sensitive (name is not the same as Name)

• are not the same as any Python language keywords (words
that already mean something else):

False, None, True, and, as, assert, async, await, break, class,
continue, def, del, elif, else, except, finally, for, from,
global, if, import, in, is, lambda, nonlocal, not, or, pass,
raise, return, try, while, with, yield

2plus2True a_number firstOfThreeValues

Variable Names
• Great power, great responsibility: 

variables names can be almost anything!

• Valid variable names:

• start with a letter or an underscore (_)

• can contain any letters and digits

• are case-sensitive (name is not the same as Name)

• are not the same as any Python language keywords (words
that already mean something else):

False, None, True, and, as, assert, async, await, break, class,
continue, def, del, elif, else, except, finally, for, from,
global, if, import, in, is, lambda, nonlocal, not, or, pass,
raise, return, try, while, with, yield

2plus2True a_number firstOfThreeValues

Variable Names
• Great power, great responsibility: 

variables names can be almost anything!

• A good variable name:

• is descriptive - tell a reader what data they refer to

• is not too long

• follows a standard naming convention, e.g.:

• starts with lower case letter

• words are separated by underscores

current_time hair_color

midterm_exam_grade_as_a_percent

a4

Variable Names
• Great power, great responsibility: 

variables names can be almost anything!

• A good variable name:

• is descriptive - tell a reader what data they refer to

• is not too long

• follows a standard naming convention, e.g.:

• starts with lower case letter

• words are separated by underscores

current_time hair_color

midterm_exam_grade_as_a_percent

a4

Variable Names
• Great power, great responsibility: 

variables names can be almost anything!

• A good variable name:

• is descriptive - tell a reader what data they refer to

• is not too long

• follows a standard naming convention, e.g.:

• starts with lower case letter

• words are separated by underscores

current_time hair_color

midterm_exam_grade_as_a_percent

a4

Variable Names
• Great power, great responsibility: 

variables names can be almost anything!

• A good variable name:

• is descriptive - tell a reader what data they refer to

• is not too long

• follows a standard naming convention, e.g.:

• starts with lower case letter

• words are separated by underscores

current_time hair_color

midterm_exam_grade_as_a_percent

a4

Variable Names
• Great power, great responsibility: 

variables names can be almost anything!

• A good variable name:

• is descriptive - tell a reader what data they refer to

• is not too long

• follows a standard naming convention, e.g.:

• starts with lower case letter

• words are separated by underscores

current_time hair_color

midterm_exam_grade_as_a_percent

a4

Variable Names
• Great power, great responsibility: 

variables names can be almost anything!

• A good variable name:

• is descriptive - tell a reader what data they refer to

• is not too long

• follows a standard naming convention, e.g.:

• starts with lower case letter

• words are separated by underscores

current_time hair_color

midterm_exam_grade_as_a_percent

a4

these depend on context!

Variables and Assignment
What is the value of the
variables a and b at the
end of this program?

a = 5
b = 5
a = 6
b = 7

A. a: 5, b: 5

B. a: 5, b: 6

C. a: 7, b: 7

D. a: 6, b: 7

Aside: More on  
function calls...

Function name

Open paren Close paren

Comma-separated list of arguments

print("I am", 31, "years old")

Keyword Arguments
A mechanism for optionally passing
information to a function.

The sep keyword argument lets you specify
what to print between arguments

print("Bellingham", "WA", "USA", sep="_")

Keyword Arguments
A mechanism for optionally passing
information to a function.

The sep keyword argument lets you specify
what to print between arguments

print("Bellingham", "WA", "USA", sep="_")

Keyword Arguments
A mechanism for optionally passing
information to a function.

The sep keyword argument lets you specify
what to print between arguments

print("Bellingham", "WA", "USA", sep="_")

If you leave it out, it's equivalent to passing a single space:

Keyword Arguments
A mechanism for optionally passing
information to a function.

The sep keyword argument lets you specify
what to print between arguments

print("Bellingham", "WA", "USA", sep="_")

If you leave it out, it's equivalent to passing a single space:

print("Bellingham", "WA", "USA", sep=" ")

print("Bellingham", "WA", "USA")# same as:

Keyword Arguments
A mechanism for optionally passing
information to a function.

The end keyword specifies what to print after
the last argument.

print("Bellingham", "WA", "USA", end="!")

Keyword Arguments
A mechanism for optionally passing
information to a function.

The end keyword specifies what to print after
the last argument.

print("Bellingham", "WA", "USA", end="!")

Demo: Print's Keyword Args

Demo: Print's Keyword Args

• Print with sep

• Print with end=""

• End defaults to newline

• Print with end="!", end="!\n"

• Print with sep and end

The newline character
In a string, the special character sequence \n
indicates a newline, or line break.

Example:
>>> print("line one\nline two")
line one
line two
>>>

Print's Keyword Args
Which of the following is printed by this line?

print("B", "C", "D", "BR", sep="A")

A. BACADABR

B. ABACADABRA

C. ABACADABR

D. BACADABRA

Print's Keyword Args
What is printed by the following code?

print("Name: ", end="\n---\n")
print("Date:", end="\n---\n")

Name:

Date:

Name:---Date:--- Name:

Date:

Name:

Date:

A: B: C: D:

Statements and
Expressions

• A statement is a line (or multiple lines) of code that Python
can execute.

• An expression is a combination of values, variables,
operators, and function calls that Python evaluates to
determine its value.

Statements and
Expressions

• A statement is a line (or multiple lines) of code that Python
can execute.

• An expression is a combination of values, variables,
operators, and function calls that Python evaluates to
determine its value.

my_name = “Scott” is an assignment statement

Statements and
Expressions

• A statement is a line (or multiple lines) of code that Python
can execute.

• An expression is a combination of values, variables,
operators, and function calls that Python evaluates to
determine its value.

my_name = “Scott” is an assignment statement

type(32)
2+2
int(a)
int(b) * 4
are all expressions

Statements and
Expressions

• A statement is a line (or multiple lines) of code that Python
can execute.

• An expression is a combination of values, variables,
operators, and function calls that Python evaluates to
determine its value.

my_name = “Scott” is an assignment statement

type(32)
2+2
int(a)
int(b) * 4
are all expressions

The notation => is often used to
mean “evaluates to”:

2 + 2 => 4
“two plus two evaluates to four”

Statements and
Expressions

• A statement is a line (or multiple lines) of code that Python
can execute.

• An expression is a combination of values, variables,
operators, and function calls that Python evaluates to
determine its value.

my_name = “Scott” is an assignment statement

type(32)
2+2
int(a)
int(b) * 4
are all expressions

The notation => is often used to
mean “evaluates to”:

2 + 2 => 4
“two plus two evaluates to four”

A statement in Python does not evaluate to a value!

Statements and
Expressions

• A statement is a line (or multiple lines) of code that Python
can execute.

• An expression is a combination of values, variables,
operators, and function calls that Python evaluates to
determine its value.

my_name = “Scott” is an assignment statement

type(32)
2+2
int(a)
int(b) * 4
are all expressions

The notation => is often used to
mean “evaluates to”:

2 + 2 => 4
“two plus two evaluates to four”

A statement in Python does not evaluate to a value!

Note: => is not a Python operator

Operators
• Operators are special symbols that

represent computations we can perform.

• Operands are the values that an operator
performs its computations on.

• We’ve seen one already: the assignment
operator.

32my_age =

Operators
• Operators are special symbols that

represent computations we can perform.

• Operands are the values that an operator
performs its computations on.

• We’ve seen one already: the assignment
operator.

32my_age =

The assignment operator.

Operators
• Operators are special symbols that

represent computations we can perform.

• Operands are the values that an operator
performs its computations on.

• We’ve seen one already: the assignment
operator.

32my_age =

The assignment operator.

Its first (left) operand

Operators
• Operators are special symbols that

represent computations we can perform.

• Operands are the values that an operator
performs its computations on.

• We’ve seen one already: the assignment
operator.

32my_age =

The assignment operator.

Its first (left) operand Its second (right) operand

=

+

-

*

/

**

//

%

Operators
Some more Python operators:

=

+

-

*

/

**

//

%

Operators
Some more Python operators:

Some of these probably look familiar…

=

+

-

*

/

**

//

%

Assignment operator: stores a value in a variable
Addition
Subtraction
Multiplication
Division

Operators
Some more Python operators:

=

+

-

*

/

**

//

%

Assignment operator: stores a value in a variable
Addition
Subtraction
Multiplication
Division

Operators
Some more Python operators:

=

+

-

*

/

**

//

%

Assignment operator: stores a value in a variable
Addition
Subtraction
Multiplication
Division

Operators
Some more Python operators:

These ones do exactly what you think.

=

+

-

*

/

**

//

%

Assignment operator: stores a value in a variable
Addition
Subtraction
Multiplication
Division

Operators
Some more Python operators:

=

+

-

*

/

**

//

%

Assignment operator: stores a value in a variable
Addition
Subtraction
Multiplication
Division

Operators
Some more Python operators:

=

+

-

*

/

**

//

%

Assignment operator: stores a value in a variable
Addition
Subtraction
Multiplication
Division

Operators
Some more Python operators:

This one too, with one quirk:

In Python, division always returns a float.

=

+

-

*

/

**

//

%

Assignment operator: stores a value in a variable
Addition
Subtraction
Multiplication
Division

Operators
Some more Python operators:

This one too, with one quirk:

In Python, division always returns a float.

3.0 / 2 => 1.5

=

+

-

*

/

**

//

%

Assignment operator: stores a value in a variable
Addition
Subtraction
Multiplication
Division

Operators
Some more Python operators:

This one too, with one quirk:

In Python, division always returns a float.

3.0 / 2 => 1.5
7 / 2 => 3.5

=

+

-

*

/

**

//

%

Assignment operator: stores a value in a variable
Addition
Subtraction
Multiplication
Division

Operators
Some more Python operators:

This one too, with one quirk:

In Python, division always returns a float.

3.0 / 2 => 1.5
7 / 2 => 3.5
4 / 2 => ??

A. 2

B. 4

C. 2.0

D. 4.0

=

+

-

*

/

**

//

%

Assignment operator: stores a value in a variable
Addition
Subtraction
Multiplication
Division

Operators
Some more Python operators:

This one too, with one quirk:

In Python, division always returns a float.

3.0 / 2 => 1.5
7 / 2 => 3.5
4 / 2 => 2.0

A. 2

B. 4

C. 2.0

D. 4.0

=

+

-

*

/

**

//

%

Assignment operator: stores a value in a variable
Addition
Subtraction
Multiplication
Division

Operators
Some more Python operators:

Exponentiation

The exponentiation operator raises the left
operand to the power of the right operand.

=

+

-

*

/

**

//

%

Assignment operator: stores a value in a variable
Addition
Subtraction
Multiplication
Division

Operators
Some more Python operators:

Exponentiation

The exponentiation operator raises the left
operand to the power of the right operand.

Math: 24 = 2 * 2 * 2 * 2 = 16

=

+

-

*

/

**

//

%

Assignment operator: stores a value in a variable
Addition
Subtraction
Multiplication
Division

Operators
Some more Python operators:

Exponentiation

The exponentiation operator raises the left
operand to the power of the right operand.

Python: 2**4 => 16

Math: 24 = 2 * 2 * 2 * 2 = 16

=

+

-

*

/

**

//

%

Assignment operator: stores a value in a variable
Addition
Subtraction
Multiplication
Division

Operators
Some more Python operators:

Exponentiation

The exponentiation operator raises the left
operand to the power of the right operand.

Python: 2**4 => 16

Math: 24 = 2 * 2 * 2 * 2 = 16

Base Exponent

=

+

-

*

/

**

//

%

Assignment operator: stores a value in a variable
Addition
Subtraction
Multiplication
Division

Operators
Some more Python operators:

Exponentiation
Integer division
Modulus (remainder)

Integer division does division and
evaluates to the integer quotient

=

+

-

*

/

**

//

%

Assignment operator: stores a value in a variable
Addition
Subtraction
Multiplication
Division

Operators
Some more Python operators:

Exponentiation
Integer division
Modulus (remainder)

Integer division does division and
evaluates to the integer quotient

Math: 7 / 2 is 3 with remainder 1

=

+

-

*

/

**

//

%

Assignment operator: stores a value in a variable
Addition
Subtraction
Multiplication
Division

Operators
Some more Python operators:

Exponentiation
Integer division
Modulus (remainder)

Integer division does division and
evaluates to the integer quotient

Python: 7 // 2 => 3

Math: 7 / 2 is 3 with remainder 1

=

+

-

*

/

**

//

%

Assignment operator: stores a value in a variable
Addition
Subtraction
Multiplication
Division

Operators
Some more Python operators:

Exponentiation
Integer division
Modulus (remainder)

The modulus operator does division and
evaluates to the integer remainder

=

+

-

*

/

**

//

%

Assignment operator: stores a value in a variable
Addition
Subtraction
Multiplication
Division

Operators
Some more Python operators:

Exponentiation
Integer division
Modulus (remainder)

The modulus operator does division and
evaluates to the integer remainder

Math: 7 / 2 is 3 with remainder 1

=

+

-

*

/

**

//

%

Assignment operator: stores a value in a variable
Addition
Subtraction
Multiplication
Division

Operators
Some more Python operators:

Exponentiation
Integer division
Modulus (remainder)

The modulus operator does division and
evaluates to the integer remainder

Python: 7 % 2 => 1

Math: 7 / 2 is 3 with remainder 1

Demo
• Arithmetic operators and expressions

• =, +, -, *, **, /, //, %

• printing from a program vs evaluating
expressions in the shell

Operator Practice

What does this expression evaluate to?
(9 % (5 // 1))

A: -1

B: 2

C: 4

D. None of the above

Operator Practice

What does this expression evaluate to?
(9 % (5 // 1))

A: -1

B: 2

C: 4

D. None of the above

Operator Practice

64 % 2

2**5

18 // 4

18 / 4

14 % 5

Operator Practice

64 % 2

2**5

18 // 4

18 / 4

14 % 5

Function Calls, Revisited
• Recall: function can take inputs called arguments

• New: A function can give back an output, called
its return value.

• A function call is an expression that evaluates to
the its return value.

• int(4.6) evaluates to 4

• print does not return a value, so print(4.6) evaluates to
None, a special keyword meaning no value

Fact
The input function's return value always has
type str

Implication:

Fact
The input function's return value always has
type str

Implication:

ask for a number
a = input("Enter a number: ")
but a is a string, so we need to:
user_number = float(a)
now user_number has type float

Fact
The input function's return value always has
type str

Implication:

ask for a number
a = input("Enter a number: ")
but a is a string, so we need to:
user_number = float(a)
now user_number has type float

we can do it in one line:
a = float(input("Enter a number:"))

Demo

Demo
• storing input's return value in a variable and

converting its type

• function call with no return value

• expression on its own line in a program

Putting it all together

a = 4
b = float(2 + a)

Putting it all together
• Consider this program:

• What happens when we execute it?

a = 4
b = float(2 + a)

Putting it all together
• Consider this program:

• What happens when we execute it?

• the value 4 gets stored in a

a = 4
b = float(2 + a)

Putting it all together
• Consider this program:

• What happens when we execute it?

• the value 4 gets stored in a

• the expression 2+a is evaluated, resulting in the value 6

a = 4
b = float(2 + a)

Putting it all together
• Consider this program:

• What happens when we execute it?

• the value 4 gets stored in a

• the expression 2+a is evaluated, resulting in the value 6

a = 4
b = float(6)

Putting it all together
• Consider this program:

• What happens when we execute it?

• the value 4 gets stored in a

• the expression 2+a is evaluated, resulting in the value 6

• 6 is passed into the float function

a = 4
b = float(6)

Putting it all together
• Consider this program:

• What happens when we execute it?

• the value 4 gets stored in a

• the expression 2+a is evaluated, resulting in the value 6

• 6 is passed into the float function

• the float function converts 6 to a float and returns 6.0

a = 4
b = 6.0

Putting it all together
• Consider this program:

• What happens when we execute it?

• the value 4 gets stored in a

• the expression 2+a is evaluated, resulting in the value 6

• 6 is passed into the float function

• the float function converts 6 to a float and returns 6.0

• the value 6.0 gets stored in variable b

a = 4
b = 6.0

Putting it all together
• In what order do things get evaluated?

• A function’s arguments are always
evaluated left-to-right before it is called: 

Putting it all together
• In what order do things get evaluated?

• A function’s arguments are always
evaluated left-to-right before it is called: 

print(2+2, 4+6, int(10.4))

Putting it all together
• In what order do things get evaluated?

• A function’s arguments are always
evaluated left-to-right before it is called: 

print(2+2, 4+6, int(10.4))

print(4, 4+6, int(10.4))

Putting it all together
• In what order do things get evaluated?

• A function’s arguments are always
evaluated left-to-right before it is called: 

print(2+2, 4+6, int(10.4))

print(4, 4+6, int(10.4))

print(4, 10, int(10.4))

Putting it all together
• In what order do things get evaluated?

• A function’s arguments are always
evaluated left-to-right before it is called: 

print(2+2, 4+6, int(10.4))

print(4, 4+6, int(10.4))

print(4, 10, int(10.4))

print(4, 10, 10)

Putting it all together
• In what order do things get evaluated?

• A function’s arguments are always
evaluated left-to-right before it is called: 

print(2+2, 4+6, int(10.4))

print(4, 4+6, int(10.4))

print(4, 10, int(10.4))

print(4, 10, 10)

4 10 10 is printed to the console

Putting it all together
• In what order do things get evaluated?

• A function’s arguments are always
evaluated left-to-right before it is called: 

• Parenthesized expressions are evaluated
inside-out:

print(2+2, 4+6, int(10.4))

Putting it all together
• In what order do things get evaluated?

• A function’s arguments are always
evaluated left-to-right before it is called: 

• Parenthesized expressions are evaluated
inside-out:

print(2+2, 4+6, int(10.4))

20 // (6 + 3)

Putting it all together
• In what order do things get evaluated?

• A function’s arguments are always
evaluated left-to-right before it is called: 

• Parenthesized expressions are evaluated
inside-out:

print(2+2, 4+6, int(10.4))

20 // (6 + 3)

20 // 9

Putting it all together
• In what order do things get evaluated?

• A function’s arguments are always
evaluated left-to-right before it is called: 

• Parenthesized expressions are evaluated
inside-out:

print(2+2, 4+6, int(10.4))

20 // (6 + 3)

20 // 9

=> 2

Putting it all together
• In what order do things get evaluated?

• A function’s arguments are always
evaluated before it is called 

• Parenthesized expressions are evaluated
inside-out:

• More next time on operator precedence

print(2+2, 4+6, int(10.4))

20 // (6 + 3)

Try it out...
What does the following program print?

a = 31
b = a // 4
c = (5 % b) - 1.0
print("a", a ** 0, sep=": ", end="; ")
print("b", b - 4, sep=": ", end="; ")
print("c", c * 2, sep=": ")

