CSCI 141

Lecture 4.
More Variables
Operators and Operands
Code Execution: Statements and Expressions

Announcements

Announcements

One small syllabus change:

Announcements

One small syllabus change:

1. Previously: drop up to 9 missed poll questions.
Now: poll questions are batched by day; drop
up to 3 days of missed polls.

QOTD

What does the following code print?

print (int(3.91))

QOTD

Which of the following programs does not
print the same thing as the others?

A: a = 14 B: a = 3
b =3 b = 14
print(a, b) print (14, 3)
C- a = 14 D:- a = 3
b = a b = 14

print(a, b) print (14, a)

QOTD

Which of the following programs does not
print the same thing as the others?

A: a = 14 B: a = 3
b =3 b = 14
print(a, b) print (14, 3)
14, 3
C- a = 14 D:- a = 3
b = a b = 14

print(a, b) print (14, a)

QOTD

Which of the following programs does not
print the same thing as the others?

A: a = 14 B: a = 3
b =3 b = 14
print(a, b) print (14, 3)
14, 3 14, 3
C- a = 14 D:- a = 3
b = a b = 14

print(a, b) print (14, a)

QOTD

Which of the following programs does not
print the same thing as the others?

A: a = 14 B: a = 3
b = 3 b = 14
print(a, b) print (14, 3)
14, 3 14, 3
C- a = 14 D:- a = 3
b = a b = 14
print(a, b) print (14, a)

14, 14

QOTD

Which of the following programs does not
print the same thing as the others?

A: a = 14 B: a = 3
b = 3 b = 14
print(a, b) print (14, 3)
14, 3 14, 3
C- a = 14 D:- a = 3
b = a b = 14
print(a, b) print (14, a)

14, 14 14, 3

Goals

Understand how to use variables in assignment statements and elsewhere
In place of values

Know the rules for naming variables, and the conventions for deciding on
good variable names

Know how to use the sep, and end keyword arguments with the print
function.

Know the definition and usage of operators and operands

« Know how to use the following operators:

= +r 7 *l **I /l //r 3
Understand the distinction between a statement and an expression.

Understand function calls as expressions that evaluate to their return
values.

Last time...

e A variable is a name in a program that refers
to a piece of data (or a value).

e How do you use them?

1. Decide what value you want to store in the variable

2. Decide on a sensible name

3. In your program, use the assignment operator to
store that value in the variable:

my age = 32
\

The assignment operator.

Last time: How to read an
assignment statement

e Assigning a value is not stating an equality,
like In math: it’s storing a value.

my age = 31

my age = 32
A variable’s value can be updated (overwritten)
by a new value using the assignment operator.

“my_age equals 32 my_age gets 32

“the variable my_age

my_age becomes 32 takes on the value 32’

Last time: How to read an
assignment statement

e Assigning a value is not stating an equality,
like In math: it’s storing a value.

my age = 31
my age = 32

A variable’s value can be updated (overwritten)
by a new value using the assignment operator.

“my_age gets 327

xmy_age equals 32"

“my_age becomes 32” the variable my_age

takes on the value 32’

Last time: How to read an
assignment statement

e Assigning a value is not stating an equality,
like In math: it’s storing a value.

my age = 31
my age = 32

A variable’s value can be updated (overwritten)
by a new value using the assignment operator.

“my_age gets 327

xmy_age equals 32"

V/my_age hecomes 307 the variable my_age

takes on the value 32’

Last time: How to read an
assignment statement

e Assigning a value is not stating an equality,
like In math: it’s storing a value.

my age = 31
my age = 32

A variable’s value can be updated (overwritten)
by a new value using the assignment operator.

\/my_age gets 32°

xmy_age equals 32"

V/my_age hecomes 307 the variable my_age

takes on the value 32’

Last time: How to read an
assignment statement

e Assigning a value is not stating an equality,
like In math: it’s storing a value.

my age = 31
my age = 32

A variable’s value can be updated (overwritten)
by a new value using the assignment operator.

\/my_age gets 32°

xmy_age equals 32"

V/my_age becomes 32” \/the variable my_age

takes on the value 32’

What can you do with
variables?

Use them anywhere you’d use a value!

print(5) a = b
print(a)

These two programs both print 5.

Variable Names

Variable Names

e How do you use variables?
1. Decide what value you want to store in the variable

2. Decide on a sensible name

3. In your program, use the assignment operator to
store that value in the variable

Variable Names

e How do you use variables?
1. Decide what value you want to store in the variable

2. Decide on a sensible name

3. In your program, use the assignment operator to
store that value in the variable

e (Great power, great responsibility:
variables names can be almost anything!

Variable Names

e Great power, great responsibility:
variables names can be almost anything!

* Valid variable names:
e start with a letter or an underscore ()
e can contain any letters and digits
e are case-sensitive (hame is not the same as Name)

* are not the same as any Python language keywords (words
that already mean something else):

False, None, True, and, as, assert, async, awalit, break, class,
continue, def, del, elif, else, except, finally, for, from,
global, if, import, in, 1is, lambda, nonlocal, not, or, pass,
raise, return, try, while, with, yield

True 2plus2 a number firstOfThreeValues

Variable Names

e Great power, great responsibility:
variables names can be almost anything!

* Valid variable names:
e start with a letter or an underscore ()
e can contain any letters and digits
e are case-sensitive (hame is not the same as Name)

* are not the same as any Python language keywords (words
that already mean something else):

False, None, True, and, as, assert, async, awalit, break, class,
continue, def, del, elif, else, except, finally, for, from,
global, if, import, in, 1is, lambda, nonlocal, not, or, pass,
raise, return, try, while, with, yield

Tale 2plus2 a number firstOfThreeValues

Variable Names

e Great power, great responsibility:
variables names can be almost anything!

* Valid variable names:
e start with a letter or an underscore ()
e can contain any letters and digits
e are case-sensitive (hame is not the same as Name)

* are not the same as any Python language keywords (words
that already mean something else):

False, None, True, and, as, assert, async, awalit, break, class,
continue, def, del, elif, else, except, finally, for, from,
global, if, import, in, 1is, lambda, nonlocal, not, or, pass,
raise, return, try, while, with, yield

TaRe 2pdls2 a number firstOfThreeValues

Variable Names

e Great power, great responsibility:
variables names can be almost anything!

* Valid variable names:
e start with a letter or an underscore ()
e can contain any letters and digits
e are case-sensitive (hame is not the same as Name)

* are not the same as any Python language keywords (words
that already mean something else):

False, None, True, and, as, assert, async, awalit, break, class,
continue, def, del, elif, else, except, finally, for, from,
global, if, import, in, 1is, lambda, nonlocal, not, or, pass,

raise, return, try, while, with, yield
'Ixe 2st2 a number firstOfThreeValues

Variable Names

e Great power, great responsibility:
variables names can be almost anything!

* Valid variable names:
e start with a letter or an underscore ()
e can contain any letters and digits
e are case-sensitive (hame is not the same as Name)

* are not the same as any Python language keywords (words
that already mean something else):

False, None, True, and, as, assert, async, awalit, break, class,
continue, def, del, elif, else, except, finally, for, from,
global, if, import, in, 1is, lambda, nonlocal, not, or, pass,

raise, return, try, while, with, yield
'Ixe 2st2 a_number %irstOfThreeValues

Variable Names

e Great power, great responsibility:
variables names can be almost anything!

* A good variable name:
e |s descriptive - tell a reader what data they refer to
e is not too long
e follows a standard naming convention, e.g.:
e starts with lower case letter

e words are separated by underscores

current time a4 hair color

midterm exam grade as a percent

Variable Names

e Great power, great responsibility:
variables names can be almost anything!

* A good variable name:
e |s descriptive - tell a reader what data they refer to
e is not too long
e follows a standard naming convention, e.g.:
e starts with lower case letter

e words are separated by underscores

jzurrent_time a4 hair color
midterm exam grade as a percent

Variable Names

e Great power, great responsibility:
variables names can be almost anything!

* A good variable name:
e |s descriptive - tell a reader what data they refer to
e is not too long
e follows a standard naming convention, e.g.:
e starts with lower case letter

e words are separated by underscores

jzurrent_time a4 wair_color

midterm exam grade as a percent

Variable Names

e Great power, great responsibility:
variables names can be almost anything!

* A good variable name:
e |s descriptive - tell a reader what data they refer to
e is not too long
e follows a standard naming convention, e.g.:
e starts with lower case letter

e words are separated by underscores

jzurrent_time a4 wair_color

mixerm_exam_grade_a s a percent

Variable Names

e Great power, great responsibility:
variables names can be almost anything!

* A good variable name:
e |s descriptive - tell a reader what data they refer to
e is not too long
e follows a standard naming convention, e.g.:
e starts with lower case letter

e words are separated by underscores

%:urrent_time x wair_color

mixerm_exam_grade_a s a percent

Variable Names

e Great power, great responsibility:
variables names can be almost anything!

* A good variable name:

e |s descriptive - tell a reader what data they refer to

¢ is not too long ——these depend on context!

e follows a standard naming convention, e.g.:
e starts with lower case letter

e words are separated by underscores

%:urrent_time x wair_color

mixerm_exam_grade_a s a percent

Variables and Assignment

What is the value of the
variables a and b at the
end of this program?

5 A. a: 5, b: 5

B. a: 5, b: 6

O o T o
I

5
= 6
/ C. a: 7, bs 7

D. a: 6, b: 7

Aside: More on
function calls...

print("I am", 31, "years old")

/ SN
/ Open paren \ Close paren

Function name Comma-separated list of arguments

Keyword Arguments

A mechanism for optionally passing
information to a function.

print ("Bellingham", "WA", "USA", sep="_")

The sep keyword argument lets you specify
what to print between arguments

Keyword Arguments

A mechanism for optionally passing

iInformation to a function.

print("Bellingham", "WA", "USA"

The sep keyword argument lets you specify

what to print between arguments

4

Sep= ll_l

)

Keyword Arguments

A mechanism for optionally passing
information to a function.

print ("Bellingham", "WA", "USA", |sep="_"|)

The sep keyword argument lets you specify
what to print between arguments

If you leave it out, it's equivalent to passing a single space:

Keyword Arguments

A mechanism for optionally passing
information to a function.

print("Bellingham", "WA", "USA", |sep="_"|

The sep keyword argument lets you specify
what to print between arguments

If you leave it out, it's equivalent to passing a single space:
print ("'Bellingham", "WA", "USA")# same as:

print("Bellingham", "WA", "USA", sep=" ")

Keyword Arguments

A mechanism for optionally passing
information to a function.

print("Bellingham", "WA", "USA", end="!")

The end keyword specifies what to print after
the last argument.

Keyword Arguments

A mechanism for optionally passing
information to a function.

print("Bellingham", "WA", "USA",|end="1!"|)

The end keyword specifies what to print after
the last argument.

Demo: Print's Keyword Args

Demo: Print's Keyword Args

e Print with sep

* Print with end=

e End defaults to newline
e Print with end="!", end="\n"

* Print with sep and end

The newline character

In a string, the special character sequence \n
indicates a newline, or line break.

Example:

>>> print("line one\nline two")
line one

line two
>>>

Print's Keyword Args

Which of the following is printed by this line?
print("B", "C", "D", "BR", sep="A")

A. BACADABR

B. ABACADABRA

C. ABACADABR

D. BACADABRA

Print's Keyword Args

What is printed by the following code?

print ("Name: ", end="\n---\n")
print("Date:", end="\n---\n")

A: B: C: D:
Name: Name:---Date:——- Name: _——
——= -—— Name

Date -

Statements and
EXpressions

e A statement is a line (or multiple lines) of code that Python
can execute.

e An expression is a combination of values, variables,
operators, and function calls that Python evaluates to
determine its value.

Statements and
EXpressions

e A statement is a line (or multiple lines) of code that Python
can execute.

my name = “Scott” Is an assignment statement
e An expression is a combination of values, variables,

operators, and function calls that Python evaluates to
determine its value.

Statements and
EXpressions

e A statement is a line (or multiple lines) of code that Python
can execute.

my name = “Scott” Is an assignment statement

e An expression is a combination of values, variables,

operators, and function calls that Python evaluates to
determine its value.

type(32)

2+2

int(a)

int(b) * 4

are all expressions

Statements and
EXpressions

e A statement is a line (or multiple lines) of code that Python
can execute.

my name = “Scott” Is an assignment statement

e An expression is a combination of values, variables,

operators, and function calls that Python evaluates to
determine its value.

The notation => is often used to
type(32) B)

mean “evaluates to”:
242
. 2 + 2 =>4
tnt(a) “two plus two evaluates to four”
int(b) * 4

are all expressions

Statements and
EXpressions

e A statement is a line (or multiple lines) of code that Python
can execute.

my name = “Scott” Is an assignment statement
A statement in Python does not evaluate to a value!

e An expression is a combination of values, variables,

operators, and function calls that Python evaluates to
determine its value.

The notation => is often used to
type(32) B)

mean “evaluates to”:
242
. 2 + 2 =>4
tnt(a) “two plus two evaluates to four”
int(b) * 4

are all expressions

Statements and
EXpressions

e A statement is a line (or multiple lines) of code that Python
can execute.

my name = “Scott” Is an assignment statement
A statement in Python does not evaluate to a value!

e An expression is a combination of values, variables,

operators, and function calls that Python evaluates to
determine its value.

The notation => is often used to
type(32) B)

mean “evaluates to”:
242
. 2 + 2 =>4
tnt(a) “two plus two evaluates to four”
int(b) * 4

are all expressions Note: => Is not a Python operator

Operators

e Operators are special symbols that
represent computations we can perform.

e Operands are the values that an operator
performs its computations on.

* \We've seen one already: the assignment
operator.

my age 32

Operators

e Operators are special symbols that
represent computations we can perform.

e Operands are the values that an operator
performs its computations on.

* \We've seen one already: the assignment
operator.

my age = 32
\

The assignment operator.

Operators

e Operators are special symbols that
represent computations we can perform.

e Operands are the values that an operator
performs its computations on.

* \We've seen one already: the assignment

operator.
lts first (left) operand
N\
my age = 32

\

The assignment operator.

Operators

e Operators are special symbols that
represent computations we can perform.

e Operands are the values that an operator
performs its computations on.

* \We've seen one already: the assignment

operator.
lts first (left) operand lts second (right) operand
\ /
my age = 32
\

The assignment operator.

Operators

Some more Python operators:

Operators

Some more Python operators:

* Some of these probably look familiar...

Operators

Some more Python operators:

Assignment operator: stores a value in a variable
+ Addition

— Subtraction

* Multiplication

/ Division

* %

//

3

Operators

Some more Python operators:

Assignment operator: stores a value in a variable
+ Addition

— Subtraction

* Multiplication

/ Division

* %

//

3

Operators

Some more Python operators:

Assignment operator: stores a value in a variable

+ Addition

— Subtraction 1hese ones do exactly what you think.
* Multiplication

/ Division

* %

//

3

Operators

Some more Python operators:

Assignment operator: stores a value in a variable
+ Addition

— Subtraction

* Multiplication

/ Division

* %

//

3

Operators

Some more Python operators:

Assignment operator: stores a value in a variable
+ Addition

— Subtraction

* Multiplication

/ Division

* %

//

3

Operators

Some more Python operators:

Assignment operator: stores a value in a variable
+ Addition

— Subtraction

* Multiplication This one toq, yv.ith one quirk:
/ Division In Python, division always returns a £fl1oat.
* %

//

3

Operators

Some more Python operators:

Assignment operator: stores a value in a variable
+ Addition

— Subtraction
* Multiplication This one too, with one quirk:

/ Division In Python, division always returns a £fl1oat.
*x 3.0 / 2 => 1.5

//

3

Operators

Some more Python operators:

Assignment operator: stores a value in a variable
+ Addition

— Subtraction
* Multiplication This one too, with one quirk:

/ Division In Python, division always returns a £fl1oat.

* % 3.0/ 2 =>1.5
// 7 / 2 => 3.5

3

Operators

Some more Python operators:

+ Addition

— Subtraction

Assignment operator: stores a value in a variable

* Multiplication This one too, with one quirk:

/ Division
* & 3.0 / 2
// 7 / 2

4 / 2

3

In Python, division always returns a float.

=> 1.5
=> 3.5
=>

B BN

o0 W
o O

Operators

Some more Python operators:

+ Addition

— Subtraction

Assignment operator: stores a value in a variable

* Multiplication This one too, with one quirk:

/ Division
* & 3.0 / 2
// 7 / 2

4 / 2

3

In Python, division always returns a float.

=> 1.5
=> 3.5
=>

B BN

OO W
o O

Operators

Some more Python operators:

= Assignment operator: stores a value in a variable

+ Addition The exponentiation operator raises the left
- Subtraction operand to the power of the right operand.

* Multiplication
/ Division
** EXxponentiation

//

3

Operators

Some more Python operators:

= Assignment operator: stores a value in a variable

+ Addition The exponentiation operator raises the left
- Subtraction operand to the power of the right operand.

* Multiplication
/ Division Math: 24=2*2*2*2 =16
** EXxponentiation

//

3

Operators

Some more Python operators:

= Assignment operator: stores a value in a variable

+ Addition The exponentiation operator raises the left
- Subtraction operand to the power of the right operand.

* Multiplication
/ Division Math: 24=2*2*2*2 =16
** EXxponentiation

//

3

Python: 2**4 => 16

Operators

Some more Python operators:

= Assignment operator: stores a value in a variable

+ Addition The exponentiation operator raises the left
- Subtraction operand to the power of the right operand.

* Multiplication
/ Division Math: 24=2*2*2*2 =16

** Exponentiation Python: 2**4 => 16

// /‘ '\

3 Base Exponent

Operators

Some more Python operators:

= Assignment operator: stores a value in a variable

+ Addition Integer division does division and
— Subtraction evaluates to the integer quotient

* Multiplication
/ Division

* % EXxponentiation
// Integer division

% Modulus (remainder)

Operators

Some more Python operators:

= Assignment operator: stores a value in a variable

+ Addition Integer division does division and
— Subtraction evaluates to the integer quotient

* Multiplication
/ Division Math: 7 / 2 is 3 with remainder 1

* % EXxponentiation
// Integer division

% Modulus (remainder)

Operators

Some more Python operators:

= Assignment operator: stores a value in a variable

+ Addition Integer division does division and
— Subtraction evaluates to the integer quotient

* Multiplication
/ Division Math: 7 / 2 is 3 with remainder 1

* % EXxponentiation

Python: 7 // 2 => 3
// Integer division

% Modulus (remainder)

Operators

Some more Python operators:

= Assignment operator: stores a value in a variable

+ Addition The modulus operator does division and
— Subtraction evaluates to the integer remainder

* Multiplication
/ Division

* % EXxponentiation
// Integer division

% Modulus (remainder)

Operators

Some more Python operators:

= Assignment operator: stores a value in a variable

+ Addition The modulus operator does division and
— Subtraction evaluates to the integer remainder

* Multiplication
/ Division Math: 7 / 2 is 3 with remainder 1

* % EXxponentiation
// Integer division

% Modulus (remainder)

Operators

Some more Python operators:

= Assignment operator: stores a value in a variable

+ Addition The modulus operator does division and
— Subtraction evaluates to the integer remainder

* Multiplication
/ Division Math: 7 / 2 is 3 with remainder 1

** Exponentiation Python: 7 & 2 => 1

// Integer division

% Modulus (remainder)

Demo

e Arithmetic operators and expressions

e printing from a program vs evaluating
expressions in the shell

Operator Practice

What does this expression evaluate to?
(9 % (5 // 1))

A: -1
B: 2
C: 4
D. None of the above

Operator Practice

What does this expression evaluate to?
(9 % (5 // 1))

A: -1
B: 2
C: 4
D. None of the above

Operator Practice

64 3 2
2%%*5

18 // 4
18 / 4

14 ¥ 5

Operator Practice

64 3 2
2%%*5

18 // 4
18 / 4

14 ¥ 5

Function Calls, Revisited

e Recall: function can take inputs called arguments

* New: A function can give back an output, called
Its return value.

e A function call is an expression that evaluates to
the its return value.

e int(4.6) evaluatesto 4

e print does not return a value, so print (4.6) evaluates to
None, a special keyword meaning no value

Fact

The input function's return value always has
type str

Implication:

Fact

The input function's return value always has
type str

Implication:
ask for a number
a = input("'Enter a number: ")
but a is a string, so we need to:
user number = float(a)
now user number has type float

Fact

The input function's return value always has
type str

Implication:
ask for a number
a = input("Enter a number: ")

but a is a string, so we need to:
user number = float(a)
now user number has type float

we can do it in one line:
a = float(input("Enter a number:"))

Demo

Demo

e storing input's return value in a variable and
converting its type

e function call with no return value

e expression on its own line in a program

Putting it all together

a 4
b float(2 + a)

Putting it all together

e Consider this program:
a = 4
b = float(2 + a)
e \What happens when we execute it?

Putting it all together

e Consider this program:
a = 4
b = float(2 + a)

e \What happens when we execute it?
e the value 4 gets stored in a

Putting it all together

e Consider this program:
a = 4
b = float(2 + a)

e \What happens when we execute it?

e the value 4 gets stored in a
e the expression 2+a is evaluated, resulting in the value 6

Putting it all together

e Consider this program:
a = 4
b = float(6)

e \What happens when we execute it?
e the value 4 gets stored in a

e the expression 2+a Is evaluated, resulting in the value 6

Putting it all together

e Consider this program:
a = 4
b = float(6)

e \What happens when we execute it?
e the value 4 gets stored in a

e the expression 2+a Is evaluated, resulting in the value 6
e 6 is passed into the f£1oat function

Putting it all together

e Consider this program:
a = 4
b =6.0

e \What happens when we execute it?
e the value 4 gets stored in a

e the expression 2+a Is evaluated, resulting in the value 6
e 6 is passed into the f£1oat function
e the float function converts 6 to a float and returns 6.0

Putting it all together

e Consider this program:
a = 4
b =26.0

e \What happens when we execute it?
e the value 4 gets stored in a

e the expression 2+a Is evaluated, resulting in the value 6
e 6 is passed into the f£1oat function
e the float function converts 6 to a float and returns 6.0

* the value 6.0 gets stored in variable b

Putting it all together

e In what order do things get evaluated?

e A function’s arguments are always
evaluated left-to-right before it is called:

Putting it all together

e In what order do things get evaluated?

e A function’s arguments are always
evaluated left-to-right before it is called:

print(2+2, 4+6, int(10.4))

Putting it all together

e In what order do things get evaluated?

e A function’s arguments are always
evaluated left-to-right before it is called:

print(2+2, 4+6, int(10.4))
print(4, 4+6, 1int(10.4))

Putting it all together

e In what order do things get evaluated?

e A function’s arguments are always
evaluated left-to-right before it is called:

print(2+2, 4+6, int(10.4))
print(4, 4+6, 1int(10.4))
print(4, 10, int(10.4))

Putting it all together

e In what order do things get evaluated?

e A function’s arguments are always
evaluated left-to-right before it is called:

print(2+2, 4+6, int(10.4))
print(4, 4+6, 1int(10.4))
print(4, 10, int(10.4))
print(4, 10, 10)

Putting it all together

e In what order do things get evaluated?

e A function’s arguments are always
evaluated left-to-right before it is called:

print(2+2, 4+6, int(10.4))
print(4, 4+6, 1int(10.4))
print(4, 10, int(10.4))
print(4, 10, 10)

4 10 10 is printed to the console

Putting it all together

e In what order do things get evaluated?

e A function’s arguments are always
evaluated left-to-right before it is called:

print(2+2, 4+6, int(10.4))

 Parenthesized expressions are evaluated
iINnside-out:

Putting it all together

e In what order do things get evaluated?

e A function’s arguments are always
evaluated left-to-right before it is called:

print(2+2, 4+6, int(10.4))

 Parenthesized expressions are evaluated
inside-out: 20 // (6 + 3)

Putting it all together

e In what order do things get evaluated?

e A function’s arguments are always
evaluated left-to-right before it is called:

print(2+2, 4+6, int(10.4))

 Parenthesized expressions are evaluated
inside-out: 20 // (6 + 3)

20 // 9

Putting it all together

e In what order do things get evaluated?

e A function’s arguments are always
evaluated left-to-right before it is called:

print(2+2, 4+6, int(10.4))
 Parenthesized expressions are evaluated
inside-out: 20 // (6 + 3)

20 // 9

=>2

Putting it all together

e In what order do things get evaluated?

e A function’s arguments are always
evaluated before it is called

print(2+2, 4+6, int(10.4))

 Parenthesized expressions are evaluated
inside-out: 20 // (6 + 3)

* More next time on operator precedence

Try 1t out...

What does the following program print?

a = 31

b =a// 4

c = (5 % b)) - 1.0

print("a", a ** 0, sep=": ", end=";

print("'b", b - 4, sep=": ", end=";
(

c', ¢ * 2, sep=": ")

