
CSCI 141
Lecture 2

Inclusive Learning Environment

Computers and Hardware

Algorithms and Pseudocode

Function Calls

Announcements

• Your first lab is on Monday or Tuesday.

Announcements

http://password.cs.wwu.edu

• Your first lab is on Monday or Tuesday.

• The CS department has its own computer network
and labs, with separate user accounts.

Announcements

http://password.cs.wwu.edu

• Your first lab is on Monday or Tuesday.

• The CS department has its own computer network
and labs, with separate user accounts.

• You need to activate your CS Account before lab:

Announcements

http://password.cs.wwu.edu

• Your first lab is on Monday or Tuesday.

• The CS department has its own computer network
and labs, with separate user accounts.

• You need to activate your CS Account before lab:

• The username will be the same as your WWU username, but you
will set a different password.

Announcements

http://password.cs.wwu.edu

• Your first lab is on Monday or Tuesday.

• The CS department has its own computer network
and labs, with separate user accounts.

• You need to activate your CS Account before lab:

• The username will be the same as your WWU username, but you
will set a different password.

• You must activate your CS account from a non-CS computer
before you arrive at your first lab next week.

Announcements

http://password.cs.wwu.edu

• Your first lab is on Monday or Tuesday.

• The CS department has its own computer network
and labs, with separate user accounts.

• You need to activate your CS Account before lab:

• The username will be the same as your WWU username, but you
will set a different password.

• You must activate your CS account from a non-CS computer
before you arrive at your first lab next week.

• Go to http://password.cs.wwu.edu and follow the instructions there.

Announcements

http://password.cs.wwu.edu

Announcements
• The first lab will get you acquainted with

Thonny and the CS labs.

• If you want to install Thonny on your own computer, you
can download it from 
http://www.thonny.org

• If you want to use a different IDE or editor, that's fine too.

• Today's QOTD is about the syllabus. You can
look at the syllabus when answering the
questions!

http://www.thonny.org

Last time: Takeaways
• This course covers the basics of programming, and is

the beginning of a journey towards a new way of thinking
and solving problems.

• Programming and problem-solving are useful skills,
whether you plan to go into computer science or not.

• Comments (beginning with #) are ignored by Python. We
use them to help out other humans reading our code.

• A program can display text on the screen using a line
such as: 
 
or equivalently: 

print("Hello, world!")

print('Hello, world!')

Goals
• A slide (or two) like this will appear at the

beginning of each lecture.

• This tells you what I want you to get out of the
lecture

• I will use it when writing exams

• You can use it when studying for exams

• The goal is transparency: you know what I want
you to know.

Goals (1)
• Appreciate the value of an inclusive learning

environment, and the steps you can take to
maintain it.

• Gain a basic understanding of the components
of a computer, and how they interact:

• Input and output devices

• Central Processing Unit

• Storage

• Programs

Goals (2)
• Know the definition and purpose of algorithms and

pseudocode and how they fit into the software
development process.

• Know the syntax used to to call a function with or
without arguments.

• Understand the behavior of the print function with
multiple arguments.

• Know how to use the input function to pause a
program.

QOTD Survey Results

Quarters

st

ud
en

ts

!
QOTD Survey Results

Months

st

ud
en

ts

QOTD Survey Results

QOTD Survey Results:
Hobbies

Inclusive Learning Environment

Inclusive Learning Environment
• There's a lot of variation among people who take this class.

• Prior programming experience

• Age, Gender, Race/ethnicity

• 1st-generation college students

• Goals for what you want to get out of this class

Inclusive Learning Environment
• There's a lot of variation among people who take this class.

• Prior programming experience

• Age, Gender, Race/ethnicity

• 1st-generation college students

• Goals for what you want to get out of this class

• Varied experiences, varied strengths, and varied perspectives
lead to better solutions to problems!

Inclusive Learning Environment
• There's a lot of variation among people who take this class.

• Prior programming experience

• Age, Gender, Race/ethnicity

• 1st-generation college students

• Goals for what you want to get out of this class

• Varied experiences, varied strengths, and varied perspectives
lead to better solutions to problems!

• Notice that not all of the above characteristics are
immediately apparent.

!
Inclusive Learning Environment

• My goal: A learning environment in which
everyone feels comfortable, curious, and
excited to learn.

• Anyone know how to ride a bike?

• My goal: A learning environment in which
everyone feels comfortable, curious, and
excited to learn.

• My ideal outcome from this course:

!
Inclusive Learning Environment

• My goal: A learning environment in which
everyone feels comfortable, curious, and
excited to learn.

• My ideal outcome from this course:

Remember what it
was like to learn?

!
Inclusive Learning Environment

• My goal: A learning environment in which
everyone feels comfortable, curious, and
excited to learn.

• My ideal outcome from this course:

What are the steps to
making this happen?

!
Inclusive Learning Environment

• Recipe for success:
!
Inclusive Learning Environment

• Recipe for success:
!
Inclusive Learning Environment

• Recipe for success:
!
Inclusive Learning Environment

• Recipe for success:
!
Inclusive Learning Environment

• Recipe for success:
!
Inclusive Learning Environment

• Recipe for success:
!
Inclusive Learning Environment

• Recipe for success:
!
Inclusive Learning Environment

• Recipe for success:
!
Inclusive Learning Environment

• Recipe for success:
!
Inclusive Learning Environment

• What does this 
 
 
 
 
 
 
 
 
have to do with an inclusive learning
environment or computer science?

!
Inclusive Learning Environment

• My goal: A learning environment in which everyone feels
comfortable, curious, and excited to learn.

• You learn by doing.

• This involves making mistakes and asking questions.

• Nobody writes perfect code on the first try, not even professionals.

• Keep this in mind when: 
 
 
 
 
 

!
Inclusive Learning Environment

• My goal: A learning environment in which everyone feels
comfortable, curious, and excited to learn.

• You learn by doing.

• This involves making mistakes and asking questions.

• Nobody writes perfect code on the first try, not even professionals.

• Keep this in mind when: 
 
 
 
 
 

This is you.

!
Inclusive Learning Environment

• My goal: A learning environment in which everyone feels
comfortable, curious, and excited to learn.

• You learn by doing.

• This involves making mistakes and asking questions.

• Nobody writes perfect code on the first try, not even professionals.

• Also keep this in mind when: 
 
 
 
 
 

!
Inclusive Learning Environment

This is you.

• My goal: A learning environment in which everyone feels
comfortable, curious, and excited to learn.

• You learn by doing.

• This involves making mistakes and asking questions.

• Nobody writes perfect code on the first try, not even professionals.

• Also keep this in mind when: 
 
 
 
 
 

!
Inclusive Learning Environment

!
Inclusive Learning Environment

• A key computer science skill: empathy.
!
Inclusive Learning Environment

• A key computer science skill: empathy.

• Empathize with the stupid computer

!
Inclusive Learning Environment

• A key computer science skill: empathy.

• Empathize with the stupid computer

• Empathize with other programmers reading your code

!
Inclusive Learning Environment

• A key computer science skill: empathy.

• Empathize with the stupid computer

• Empathize with other programmers reading your code

• Empathize with your peers and understand that they
learn in their own way, at their own pace.

!
Inclusive Learning Environment

• A key computer science skill: empathy.

• Empathize with the stupid computer

• Empathize with other programmers reading your code

• Empathize with your peers and understand that they
learn in their own way, at their own pace.

• Try to keep this in mind in the classroom, in
labs, in the hallways, and in general.

!
Inclusive Learning Environment

One more thing about me

Me

One more thing about me

Me

One more thing about me
This is only my second time teaching CSCI 141! 
 
 
 

Me

One more thing about me
This is only my second time teaching CSCI 141! 
 
 
 

And I'm overhauling it to try to make it better, so
much of what I'm doing is brand new!

Me

Getting Stuck and
Getting Un-Stuck

Getting Stuck and
Getting Un-Stuck

• At some point when programming, you will
probably get stuck.

Getting Stuck and
Getting Un-Stuck

• At some point when programming, you will
probably get stuck.

• Ideal case: you puzzle through the problem, refer
to your notes, the slides, or the textbook, and you
independently arrive at that “ah-ha!” moment.

Getting Stuck and
Getting Un-Stuck

• At some point when programming, you will
probably get stuck.

• Ideal case: you puzzle through the problem, refer
to your notes, the slides, or the textbook, and you
independently arrive at that “ah-ha!” moment.

• Common case: half hour later you’re no less
confused; maybe you don’t even know what
question to ask. This is when you should get
help.

Getting Stuck and
Getting Un-Stuck

• Ways to get help when you’re stuck:

• My office hours and TA office hours (see the webpage)

• CS mentor hours: 4:00pm-7:00pm in CF 162/164.

• Piazza - an online Q&A forum for students in this class.
Details to be announced next week.

• This only works if you have time between now
and the deadline.

• Don’t underestimate the programming
assignments: start early.

Last time: Hello, world!

Last time: Hello, world!
• Python is our chosen programming

language in this course.

Last time: Hello, world!
• Python is our chosen programming

language in this course.

• A programming language is a language a
computer can “understand” and execute  
(more on what this means next time)

Last time: Hello, world!
• Python is our chosen programming

language in this course.

• A programming language is a language a
computer can “understand” and execute  
(more on what this means next time)

• We’ll use a program called Thonny to write
our Python code.

Last time: Hello, world!
• Python is our chosen programming

language in this course.

• A programming language is a language a
computer can “understand” and execute  
(more on what this means next time)

• We’ll use a program called Thonny to write
our Python code.

• Thonny is an example of an “Integrated
Development Environment” (IDE): a program
that provides all the features you need to
write, run, and fix errors in programs.

Author: Scott Wehrwein
Date: 9/25/2019
Description: A program that prints
"Hello, World!" to the screen.

print("Hello, World!")

Last time: Hello, world!
Our first Python program:

What just happened?
• A lot! This course won’t get into the details.

• A simple model of a computer:

CPU Main
Memory Secondary

Storage
Output Devices

Input Devices

Hardware
• A simple model of a computer:

Input Devices
Supply input from a user to the computer.

Hardware
• A simple model of a computer:

Output Devices Transmit information back to the user.

Hardware
• A simple model of a computer:

CPU:
Central Processing Unit

Executes instructions to run computer programs.

Hardware
• A simple model of a computer:

Main
Memory

Short-term storage:

Does not persist when the computer is
turned off or the program quits.

Hardware
• A simple model of a computer:

Main
Memory

Short-term storage:

Does not persist when the computer is
turned off or the program quits.

also known Random Access Memory (RAM)

Hardware
• A simple model of a computer:

Secondary
Storage

Long-term information storage:

Stays around even if computer is off, or
if program quits.

Hardware

CPU Main
Memory Secondary

Storage
Output Devices

Input Devices

• A simple model of a computer:

Socrative

Login instructions:

1. Go to www.socrative.com

2. Click "Login" then "Student Login"

3. Enter "1pm141" for the Room Name

4. Enter your WWU username (e.g., wehrwes; not your W#)

5. Pick "D" so I can see that you've gotten it to work.

is a tool for collecting
instant feedback in class.

http://www.socrative.com

Socrative

Login instructions:

1. Go to www.socrative.com

2. Click "Login" then "Student Login"

3. Enter "1pm141" for the Room Name

4. Enter your WWU username (e.g., wehrwes; not your W#)

5. Pick "D" so I can see that you've gotten it to work.

is a tool for collecting
instant feedback in class.
Not working? Don't worry.

• Today's polls don't count

towards the poll grade.

• Email me and I'll make sure

you're on the roster

http://www.socrative.com

Socrative Practice
The instructor of this course prefers that you
address him as:

A. Professor Wehrwein

B. Scott

C. Dr. Wehrwein

D. Dude

CPU stands for:

A. Coronary Pulse Upkeep

B. Critical Process Undertaker

C. Computer Process User

D. Central Processing Unit

CPU

What can computers do?

CPU Main
Memory Secondary

Storage
Output Devices

Input Devices

• Run programs (software).

What can computers do?
• Run programs (software).

• That’s it!

CPU Main
Memory Secondary

Storage
Output Devices

Input Devices

CPU

Executes instructions to run computer programs.

How do computers run programs?

Let’s take a closer look…

CPU

How do computers run programs?

Let’s take a closer look…

CPU

How do computers run programs?

Let’s take a closer look…

CPU

How do computers run programs?

Let’s take a closer look…

CPU

How do computers run programs?

CPU

Let’s not take a closer look.

How do computers run programs?

CPU

Let’s not take a closer look.

We don’t need to know the hardware details!

This is an example of abstraction.

How do computers run programs?

In brief...

In brief...
• Your code is translated into simpler code

In brief...
• Your code is translated into simpler code
• The simpler code is translated into even simpler code

In brief...
• Your code is translated into simpler code
• The simpler code is translated into even simpler code
• and so on...

In brief...
• Your code is translated into simpler code
• The simpler code is translated into even simpler code
• and so on...
• ...until the instructions are so "simple"  

that an electronic circuit can do it

In brief...

• The "simple" instructions are stored in main memory

• All the CPU does is:

1. Fetch the next instruction from memory and "decode" it

2. Execute it

• Your code is translated into simpler code
• The simpler code is translated into even simpler code
• and so on...
• ...until the instructions are so "simple"  

that an electronic circuit can do it

In brief...

• The "simple" instructions are stored in main memory

• All the CPU does is:

1. Fetch the next instruction from memory and "decode" it

2. Execute it

• Your code is translated into simpler code
• The simpler code is translated into even simpler code
• and so on...
• ...until the instructions are so "simple"  

that an electronic circuit can do it

Examples of such "simple" instructions:

• Copy a piece of data from memory into the CPU

• Do arithmetic on pieces of data in the CPU

• Copy a piece of data from the CPU to memory

How do computers run programs?
Consider a program that performs the following tasks:

• Multiply 3 by 4

• Add 2 to the result

• Print the final result to the screen.

Here are the steps that might get translated to:

How do computers run programs?
Consider a program that performs the following tasks:

• Multiply 3 by 4

• Add 2 to the result

• Print the final result to the screen.

• Load 3 into CPU slot A

• Load 4 into CPU slot B

• Multiply CPU slot A by CPU slot B

• Store the result in CPU slot A

• Load 2 into CPU slot B

• Add CPU slot A to slot B

• Store the result in slot A

• Print the value in slot A

Here are the steps that might get translated to:

Our Simple Program

Is this a Python program?

Multiply 3 by 4

Add 2 to the result

Print the final result to the screen.

Our Simple Program

Is this a Python program?

Let's find out...

Multiply 3 by 4

Add 2 to the result

Print the final result to the screen.

Our Simple Program

Is this a Python program?

No!

Multiply 3 by 4

Add 2 to the result

Print the final result to the screen.

Algorithms

Is this a Python program?

No, but it is an algorithm.

Multiply 3 by 4

Add 2 to the result

Print the final result to the screen.

An algorithm is a sequence of steps that solve a problem.

Remember from last time...
Problem solving and software engineering

Correct Python syntax

Remember from last time...
Problem solving and software engineering

Correct Python syntax

Designing an algorithm: what sequence of steps?

Remember from last time...
Problem solving and software engineering

Correct Python syntax

Designing an algorithm: what sequence of steps?

Implementing an algorithm: writing the steps in Python.

Pseudocode
Problem solving and software engineering

Designing an algorithm: what sequence of steps?

Pseudocode
Problem solving and software engineering

Designing an algorithm: what sequence of steps?

Ignore Python syntax: describe the steps in English or 
pseudocode.

Pseudocode
Problem solving and software engineering

Designing an algorithm: what sequence of steps?

Ignore Python syntax: describe the steps in English or 
pseudocode.

Pseudocode is a halfway-point between English and Python.

Think of it as an informal but precise* description of an
algorithm.

Pseudocode
Problem solving and software engineering

Designing an algorithm: what sequence of steps?

Ignore Python syntax: describe the steps in English or 
pseudocode.

Pseudocode is a halfway-point between English and Python.

Think of it as an informal but precise* description of an
algorithm.

*For our purposes:

precise enough that a programmer could translate it into Python.

Pseudocode
Pseudocode:

Multiply 3 by 4

Add 2 to the result

Print the final result to the screen.

Pseudocode
Pseudocode:

Multiply 3 by 4

Add 2 to the result

Print the final result to the screen.

Python implementation:

Pseudocode
Pseudocode:

print(3 * 4 + 2)

Multiply 3 by 4

Add 2 to the result

Print the final result to the screen.

Python implementation:

Function Calls
print(3 * 4 + 2)

print("Hello, world!")

print("Hello", 3 * 4 + 2)

Function Calls

Each of these lines makes a call to the print function.

print(3 * 4 + 2)

print("Hello, world!")

print("Hello", 3 * 4 + 2)

Function Calls

Each of these lines makes a call to the print function.

What exactly is a function? More on this later.

print(3 * 4 + 2)

print("Hello, world!")

print("Hello", 3 * 4 + 2)

Function Calls

Each of these lines makes a call to the print function.

What exactly is a function? More on this later.

For now: it's a thing that does stuff for us.

print(3 * 4 + 2)

print("Hello, world!")

print("Hello", 3 * 4 + 2)

Function Calls

Each of these lines makes a call to the print function.

What exactly is a function? More on this later.

For now: it's a thing that does stuff for us.

print(3 * 4 + 2)

print("Hello, world!")

print("Hello", 3 * 4 + 2)

(We make it do stuff for us by calling it.)

Function Calls

Each of these lines makes a call to the print function.

What exactly is a function? More on this later.

For now: it's a thing that does stuff for us.

print(3 * 4 + 2)

print("Hello, world!")

Here's another example of a function call:

print("Hello", 3 * 4 + 2)

(We make it do stuff for us by calling it.)

Function Calls

Each of these lines makes a call to the print function.

What exactly is a function? More on this later.

For now: it's a thing that does stuff for us.

print(3 * 4 + 2)

print("Hello, world!")

Here's another example of a function call:
input()

print("Hello", 3 * 4 + 2)

(We make it do stuff for us by calling it.)

Function Calls

Each of these lines makes a call to the print function.

What exactly is a function? More on this later.

For now: it's a thing that does stuff for us.

print(3 * 4 + 2)

print("Hello, world!")

Here's another example of a function call:
input()

Let's see if we can figure out what stuff it does...

print("Hello", 3 * 4 + 2)

(We make it do stuff for us by calling it.)

Demo: print and input

Demo: print and input
• the Shell pane in Thonny

• �

• Print with multiple arguments

• A space is printed between each

• input() to pause the program

print(3 * 4 + 2)

